Abstract

Slow light plays an outstanding role in a wide variety of optical applications, from quantum information to optical processing. While slow optical guiding in photonic crystal waveguides is typically based on Bragg band gaps occurring in non-resonant photonic crystals, here we explore the possibility to leverage the hybridization photonic band gaps of resonant photonic crystals to induce a different form of slow light guiding. We study a line-defect waveguide in a periodic structure composed of high-permittivity resonant dielectric objects and exploit the different guiding mechanisms associated with the hybridization band gap to induce slow light in the resonant phase of the crystal. We demonstrate quantitatively that this method can, in principle, produce high group indices over large bandwidths with potential values of group-index bandwidth products up to 0.67.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Slow light in ellipse-hole photonic crystal line-defect waveguide with high normalized delay bandwidth product

Vali Varmazyari, Hamidreza Habibiyan, and Hassan Ghafoorifard
J. Opt. Soc. Am. B 31(4) 771-779 (2014)

Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton
Opt. Express 17(3) 1628-1635 (2009)

Four-wave mixing in slow light engineered silicon photonic crystal waveguides

C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, and T. F. Krauss
Opt. Express 18(22) 22915-22927 (2010)

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
    [Crossref]
  2. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [Crossref]
  3. A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [Crossref]
  4. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [Crossref]
  5. M. D. Lukin and A. Imamoǧlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref]
  6. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  7. S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
    [Crossref]
  8. E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
    [Crossref]
  9. J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).
  10. A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
    [Crossref]
  11. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
    [Crossref]
  12. J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
    [Crossref]
  13. L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
    [Crossref]
  14. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
    [Crossref]
  15. M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
    [Crossref]
  16. N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
    [Crossref]
  17. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18(16), 16309 (2010).
    [Crossref]
  18. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18(6), 5942 (2010).
    [Crossref]
  19. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
    [Crossref]
  20. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  21. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref]
  22. M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
    [Crossref]
  23. D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
    [Crossref]
  24. X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
    [Crossref]
  25. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
    [Crossref]
  26. F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
    [Crossref]
  27. S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
    [Crossref]
  28. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
    [Crossref]
  29. Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
    [Crossref]
  30. N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
    [Crossref]
  31. E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
    [Crossref]
  32. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  33. Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
    [Crossref]
  34. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng., Part 3 94(27), 65–68 (1947).
    [Crossref]
  35. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
    [Crossref]
  36. D. Felbacq and G. Bouchitté, “Negative refraction in periodic and random photonic crystals,” New J. Phys. 7, 159 (2005).
    [Crossref]
  37. B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
    [Crossref]
  38. K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
    [Crossref]
  39. S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 14(25), 3076383–6394 (2002).
    [Crossref]
  40. K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
    [Crossref]
  41. W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
    [Crossref]
  42. E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
    [Crossref]
  43. N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
    [Crossref]
  44. S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
    [Crossref]
  45. A. A. Maznev and V. E. Gusev, “Waveguiding by a locally resonant metasurface,” Phys. Rev. B 92(11), 115422 (2015).
    [Crossref]
  46. B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
    [Crossref]
  47. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
    [Crossref]
  48. Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
    [Crossref]
  49. A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
    [Crossref]

2019 (1)

E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
[Crossref]

2018 (2)

B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
[Crossref]

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

2017 (5)

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

2016 (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

2015 (3)

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

A. A. Maznev and V. E. Gusev, “Waveguiding by a locally resonant metasurface,” Phys. Rev. B 92(11), 115422 (2015).
[Crossref]

2014 (2)

2013 (4)

M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

2011 (1)

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

2010 (5)

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and utra-low dispersion,” Opt. Express 18(6), 5942 (2010).
[Crossref]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18(16), 16309 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

2009 (2)

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

2008 (4)

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

2007 (3)

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
[Crossref]

2006 (2)

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

2005 (2)

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

D. Felbacq and G. Bouchitté, “Negative refraction in periodic and random photonic crystals,” New J. Phys. 7, 159 (2005).
[Crossref]

2004 (3)

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
[Crossref]

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

2003 (2)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

2002 (1)

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 14(25), 3076383–6394 (2002).
[Crossref]

2001 (2)

M. D. Lukin and A. Imamoǧlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

2000 (1)

Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
[Crossref]

1999 (1)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng., Part 3 94(27), 65–68 (1947).
[Crossref]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

Asger, N.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Attari, A. R.

M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
[Crossref]

Aydin, K.

E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Badolato, A.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Baker-Jarvis, J.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

Baranov, D. G.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Basov, D. N.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
[Crossref]

Beggs, D. M.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

Belov, P. A.

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Berthelot, T.

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

Bouchitté, G.

D. Felbacq and G. Bouchitté, “Negative refraction in periodic and random photonic crystals,” New J. Phys. 7, 159 (2005).
[Crossref]

Bourlier, Y.

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

Boyd, R. W.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Cabuz, A. I.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Cassagne, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Cassan, E.

Casse, B. D. F.

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

Causier, A.

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

Centeno, E.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Chen, X.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Chichkov, B. N.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Derov, J. S.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Di Gennaro, E.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Do Khanh, V.

Du, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Engheta, N.

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

Evlyukhin, A. B.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

Felbacq, D.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

D. Felbacq and G. Bouchitté, “Negative refraction in periodic and random photonic crystals,” New J. Phys. 7, 159 (2005).
[Crossref]

Filonov, D. S.

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Fink, M.

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

Fleury, R.

B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

Gao, B.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Gao, D.

Goor, J.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Guizal, B.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Gusev, V. E.

A. A. Maznev and V. E. Gusev, “Waveguiding by a locally resonant metasurface,” Phys. Rev. B 92(11), 115422 (2015).
[Crossref]

Guven, K.

E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
[Crossref]

Hao, R.

Hedge, R.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

Houdré, R.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Huang, K. C.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
[Crossref]

Imamoglu, A.

M. D. Lukin and A. Imamoǧlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Joannopoulos, J. D.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

Joannopoulos, J. J. D.

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Johnson, S.

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Johnson, S. G.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

Kabos, P.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

Kaina, N.

B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
[Crossref]

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

Kang, L.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Khatibi Moghaddam, M.

M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
[Crossref]

Kivshar, Y. S.

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Kotov, O. V.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Krasnok, A. E.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Krauss, T. F.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

Krishnamurthy, S.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

Kuramochi, E.

N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
[Crossref]

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Kurt, H.

Lai, Y.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Lan, C.

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Le Roux, X.

Lemoult, F.

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

Lepeshov, S. I.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Lerosey, G.

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng., Part 3 94(27), 65–68 (1947).
[Crossref]

Li, B.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Li, E. P.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

Li, L.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Limonov, M. F.

E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
[Crossref]

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Liu, X.

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Liu, Z.

Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
[Crossref]

Lu, W.

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

Lu, W. T.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Lukin, M. D.

M. D. Lukin and A. Imamoǧlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

Mao, Y.

Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
[Crossref]

Marris-Morini, D.

Maslova, E. E.

E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
[Crossref]

Matsuda, N.

Matter, B. C.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Matter, C.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Maznev, A. A.

A. A. Maznev and V. E. Gusev, “Waveguiding by a locally resonant metasurface,” Phys. Rev. B 92(11), 115422 (2015).
[Crossref]

Meade, R. R. D.

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Melloni, A.

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

Meng, Y.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Minkov, M.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Mirsalehi, M. M.

M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
[Crossref]

Mohamed, M. S.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Notomi, M.

N. Matsuda, E. Kuramochi, H. Takesue, and M. Notomi, “Dispersion and light transport characteristics of large-scale photonic-crystal coupled nanocavity arrays,” Opt. Lett. 39(8), 2290–2293 (2014).
[Crossref]

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

O’Brien, S.

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 14(25), 3076383–6394 (2002).
[Crossref]

O’Faolain, L.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

Orazbayev, B.

B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
[Crossref]

Ozbay, E.

E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
[Crossref]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Padilla, W. J.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
[Crossref]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

Parimi, P. V.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Park, G. H.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

Pendry, J. B.

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 14(25), 3076383–6394 (2002).
[Crossref]

Povinelli, M. L.

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
[Crossref]

Review, P.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Rybin, M. V.

E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
[Crossref]

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Samusev, K. B.

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

Savo, S.

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

Savona, V.

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Schulz, S. A.

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Shinya, A.

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

Slovick, B. A.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Smith, D. R.

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
[Crossref]

Sridhar, S.

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Szabó, Z.

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

Takesue, H.

Tanabe, T.

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Taniyama, H.

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

Turchinetz, B.

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

Version, D.

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Villeneuve, P. R.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

Vivien, L.

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Vynck, K.

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

White, T. P.

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

Winn, J. N. J.

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Wu, B. I.

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Wu, H.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Xie, Q.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

Yu, Z. G.

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

Yves, S.

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhang, X.

Zhao, H.

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Zhao, Q.

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Zhou, J.

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

Zhou, Z.

Zhu, Y. Y.

Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
[Crossref]

Zuev, D. A.

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Appl. Phys. Lett. (5)

S. Savo, B. D. F. Casse, W. Lu, and S. Sridhar, “Observation of slow-light in a metamaterials waveguide at microwave frequencies,” Appl. Phys. Lett. 98(17), 171907 (2011).
[Crossref]

X. Liu, Q. Zhao, C. Lan, and J. Zhou, “Isotropic Mie resonance-based metamaterial perfect absorber,” Appl. Phys. Lett. 103(3), 031910 (2013).
[Crossref]

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Ultra small mode volume defect cavities in spatially ordered and disordered metamaterials,” Appl. Phys. Lett. 102(14), 144104 (2013).
[Crossref]

Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, and Y. Meng, “Tunable negative permeability in an isotropic dielectric composite,” Appl. Phys. Lett. 92(5), 051106 (2008).
[Crossref]

K. C. Huang, M. L. Povinelli, and J. D. Joannopoulos, “Negative effective permeability in polaritonic photonic crystals,” Appl. Phys. Lett. 85(4), 543–545 (2004).
[Crossref]

IEEE Trans. Antennas Propag. (2)

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A Double Negative (DNG) Composite Medium Composed of Magnetodielectric Spherical Particles Embedded in a Matrix,” IEEE Trans. Antennas Propag. 51(10), 2596–2603 (2003).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

Z. Szabó, G. H. Park, R. Hedge, and E. P. Li, “A unique extraction of metamaterial parameters based on Kramers-Kronig relationship,” IEEE Trans. Microwave Theory Tech. 58(10), 2646–2653 (2010).
[Crossref]

J. Eur. Opt. Soc. (1)

M. Khatibi Moghaddam, A. R. Attari, and M. M. Mirsalehi, “High coupling efficiency to a low dispersion slow light-supporting photonic crystal waveguide,” J. Eur. Opt. Soc. 8, 13066 (2013).
[Crossref]

J. Inst. Electr. Eng., Part 3 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng., Part 3 94(27), 65–68 (1947).
[Crossref]

J. Opt. (2)

S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: A comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, T. F. Krauss, and S. A. Schulz, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12(10), 104004 (2010).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

E. Ozbay, K. Guven, and K. Aydin, “Metamaterials with negative permeability and negative refractive index: Experiments and simulations,” J. Opt. A: Pure Appl. Opt. 9(9), S301–S307 (2007).
[Crossref]

J. Phys.: Condens. Matter (1)

S. O’Brien and J. B. Pendry, “Magnetic activity at infrared frequencies in structured metallic photonic crystals,” J. Phys.: Condens. Matter 14(25), 3076383–6394 (2002).
[Crossref]

JETP Lett. (1)

E. E. Maslova, M. F. Limonov, and M. V. Rybin, “Transition between a Photonic Crystal and a Metamaterial with Electric Response in Dielectric Structures,” JETP Lett. 109(5), 340–344 (2019).
[Crossref]

Mater. Today (2)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

W. J. Padilla, D. N. Basov, and D. R. Smith, “Negative refractive index metamaterials,” Mater. Today 9(7-8), 28–35 (2006).
[Crossref]

Nanophotonics (1)

D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, “All-dielectric nanophotonics: the quest for better materials and fabrication techniques,” Nanophotonics 4(7), 814–825 (2017).
[Crossref]

Nat. Commun. (2)

M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nat. Commun. 6(1), 10102 (2015).
[Crossref]

S. Yves, R. Fleury, T. Berthelot, M. Fink, F. Lemoult, and G. Lerosey, “Crystalline metamaterials for topological properties at subwavelength scales,” Nat. Commun. 8(1), 16023 (2017).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref]

Nat. Photonics (5)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2(8), 448–450 (2008).
[Crossref]

A. Shinya, E. Kuramochi, H. Taniyama, T. Tanabe, and M. Notomi, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[Crossref]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[Crossref]

Nat. Phys. (1)

F. Lemoult, N. Kaina, M. Fink, and G. Lerosey, “Wave propagation control at the deep subwavelength scale in metamaterials,” Nat. Phys. 9(1), 55–60 (2013).
[Crossref]

Nature (3)

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, “Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials,” Nature 525(7567), 77–81 (2015).
[Crossref]

M. D. Lukin and A. Imamoǧlu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[Crossref]

New J. Phys. (2)

S. Yves, R. Fleury, F. Lemoult, M. Fink, and G. Lerosey, “Topological acoustic polaritons: Robust sound manipulation at the subwavelength scale,” New J. Phys. 19(7), 075003 (2017).
[Crossref]

D. Felbacq and G. Bouchitté, “Negative refraction in periodic and random photonic crystals,” New J. Phys. 7, 159 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Appl. (1)

B. Orazbayev, N. Kaina, and R. Fleury, “Chiral waveguides for robust waveguiding at the deep subwavelength scale,” Phys. Rev. Appl. 10(5), 054069 (2018).
[Crossref]

Phys. Rev. B (6)

A. A. Maznev and V. E. Gusev, “Waveguiding by a locally resonant metasurface,” Phys. Rev. B 92(11), 115422 (2015).
[Crossref]

A. Alù and N. Engheta, “Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines,” Phys. Rev. B 74(20), 205436 (2006).
[Crossref]

B. A. Slovick, Z. G. Yu, and S. Krishnamurthy, “Generalized effective-medium theory for metamaterials,” Phys. Rev. B 89(15), 155118 (2014).
[Crossref]

E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72(3), 033110 (2005).
[Crossref]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60(8), 5751–5758 (1999).
[Crossref]

J. Goor, N. Asger, P. Review, B. C. Matter, D. Version, and C. Matter, “Limits of slow light in photonic crystals,” Phys. Rev. B 78(15), 153101 (2008).
[Crossref]

Phys. Rev. E (1)

X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70(1), 016608 (2004).
[Crossref]

Phys. Rev. Lett. (2)

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87(25), 253902 (2001).
[Crossref]

K. Vynck, D. Felbacq, E. Centeno, A. I. Cǎbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009).
[Crossref]

Sci. Rep. (2)

A. Badolato, R. Houdré, M. Minkov, R. W. Boyd, M. S. Mohamed, B. Gao, Y. Lai, and V. Savona, “Ultra-wide-band structural slow light,” Sci. Rep. 8(1), 1–5 (2018).
[Crossref]

N. Kaina, A. Causier, Y. Bourlier, M. Fink, T. Berthelot, and G. Lerosey, “Slow waves in locally resonant metamaterials line defect waveguides,” Sci. Rep. 7(1), 15105 (2017).
[Crossref]

Science (1)

Z. Liu, X. Zhang, Y. Mao, and Y. Y. Zhu, “Locally Resonant Sonic Materials,” Science 289(5485), 1734–1736 (2000).
[Crossref]

Other (1)

J. J. D. Joannopoulos, S. Johnson, J. N. J. Winn, and R. R. D. Meade, Photonic Crystals: Molding the Flow of Light (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. A simple, all-dielectric, resonant periodic crystal. (a) A dielectric rod with an axis oriented along z-direction (r = 0.4a, ɛ=39) is used as a building block for a square lattice, and the TE modes (Hz, Ex, Ey) are considered. (b) The computed band diagram for the unit cell in ΓXMΓ directions, for both TE and TM modes. (c) Numerically computed S parameters of a two-port structure consist of a 8a×8a lattice of the dielectric rods. (d) The effective permeability of the slab extracted from the S parameters using a standard retrieval method.
Fig. 2.
Fig. 2. (a) The gap maps versus refractive index for a fixed value of the dielectric filling ratio, r = 0.25a. (b) The gap maps for various values of filling ratio (r/a), for a fixed value of the refractive index n = 6.245 (ɛ’=39).
Fig. 3.
Fig. 3. (a) A line defect waveguide created by reducing the size of rods in one row of lattice considering f1=0.172 (c/a) and f0=0.15 (c/a). (b) A different line defect waveguide created by removing one row of rods. (c) A linear 1D array of dielectric rods as a cascade of Mie resonators with the resonance frequency of f1. (d) Dispersion curves of guided modes near the hybridization bandgap frequency for the three different structures labeled by A, B, and C.
Fig. 4.
Fig. 4. (a) The typical transmission spectra for the three waveguiding structures shown by A, B, and C, computed by 2D FDTD. (b) Propagation of a narrow band continuous-wave pulse with a central frequency of fc=0.165[c/a] in the proposed waveguide A. (c) Fast wave propagation in the line-defect waveguide created by removing one row of rods (waveguide B)
Fig. 5.
Fig. 5. (a) Dispersion curve of line-defect modes inside the band gap and. The gray thin line shows the light line. (b) The group index versus frequency for 0.32a < r1<0.38a. (c) GVD versus frequency. Note that the near-zero GVD region correspond to the middle of the band, which falls below the light line.
Fig. 6.
Fig. 6. The group index (a, d), bandwidth (b, e), and the GBP (c, f) of the resonant photonic crystal line-defect waveguide for various values of ɛ1 and r1

Metrics