Abstract

A beam-scanning terahertz (THz) radiation mechanism in a free-electron-driven grating system is proposed for THz applications. By loading a period-asynchronous rod array above the grating, the spoof surface plasmon (SSP) originally excited by the electron changes its radiation characteristics owing to the rod-induced Brillouin zone folding effect. The rod array functions as an antenna and converts the SSP into a spatial coherent THz radiation. The radiation frequency and direction can be precisely controlled by the electron energy. The field intensity of the radiation is increased approximately 20 times compared with that of the conventional Smith–Purcell radiation in the same frequency range. In addition, a microwave-band scaling prototype is fabricated and the frequency-controlled radiation is measured. Excellent agreement between the experimental and simulated results is obtained. This study paves the way for the development of on-chip THz sources for advanced communication and detection applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electron-beam induced terahertz radiation from graded metallic grating

Akiko Okajima and Tatsunosuke Matsui
Opt. Express 22(14) 17490-17496 (2014)

Enhanced coherent terahertz Smith-Purcell superradiation excited by two electron-beams

Yaxin Zhang and Liang Dong
Opt. Express 20(20) 22627-22635 (2012)

Smith-Purcell radiation from periodic beams

D. Y. Sergeeva, A. P. Potylitsyn, A. A. Tishchenko, and M. N. Strikhanov
Opt. Express 25(21) 26310-26328 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
    [Crossref]
  2. S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  5. M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
    [Crossref]
  6. J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.
  7. H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
    [Crossref]
  8. R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
    [Crossref]
  9. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref]
  10. L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
    [Crossref]
  11. Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
    [Crossref]
  12. Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
    [Crossref]
  13. J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
    [Crossref]
  14. W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
    [Crossref]
  15. Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
    [Crossref]
  16. Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
    [Crossref]
  17. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref]
  18. A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
    [Crossref]
  19. S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
    [Crossref]
  20. A. Okajima and T. Matsui, “Electron-beam induced terahertz radiation from graded metallic grating,” Opt. Express 22(14), 17490–17496 (2014).
    [Crossref]
  21. H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
    [Crossref]
  22. N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
    [Crossref]
  23. I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
    [Crossref]
  24. K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).
  25. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
    [Crossref]
  26. CST Corporation, “CST PS Tutorials,” http://www.cst-china.cn .
  27. W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
    [Crossref]
  28. I. Shih, D. B. Chang, J. Drummond, K. Dubbs, D. Masters, R. Prohaska, and W. W. Salisbury, “Experimental investigation of radiation from the interaction of an electron beam and a conducting grating,” Opt. Lett. 15(10), 559–561 (1990).
    [Crossref]
  29. T. Ochiai and K. Ohtaka, “Theory of unconventional Smith–Purcell radiation in finite-size photonic crystals,” Opt. Express 14(16), 7378–7397 (2006).
    [Crossref]
  30. J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
    [Crossref]
  31. A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
    [Crossref]
  32. Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
    [Crossref]

2019 (3)

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Ye, F. Liu, M. Wang, L. Tai, K. Cui, X. Feng, and Y. Huang, “Deep-ultraviolet Smith–Purcell radiation,” Optica 6(5), 592–597 (2019).
[Crossref]

2018 (3)

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

2017 (1)

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

2016 (3)

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

2015 (2)

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

2014 (4)

2013 (2)

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

2012 (2)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

2009 (1)

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

2008 (1)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (1)

2004 (2)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

2002 (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

1990 (1)

Akyildiz, I. F.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Ambacher, O.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Baek, I. K.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Bao, L. Y.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Barik, R. K.

Basten, M. A.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Bera, A.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Bhattacharya, R.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Boes, F.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Chang, D. B.

Chang, K.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Chen, Z. G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Cui, K.

Dong, L.

Drummond, J.

Du, C. H.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Dubbs, K.

Fahad, A. K.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Feng, X.

Freude, W.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Gallagher, D. A.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Gang, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Glyavin, M. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Golubiatnikov, G. Y.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Gong, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Han, C.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

He, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

He, Z. C.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Henneberger, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hibbins, A. P.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Hillerkuss, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hong, D.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Huang, C. P.

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Huang, Y.

Jiang, G.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Jornet, J. M.

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Kallfass, I.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Karl, N. J.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Kim, S.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Koenig, S.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kong, L. B.

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Kooi, S. E.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Koos, C.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kreischer, K. E.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Kwon, O.

Lawrence, C. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Leuther, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Li, D.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Li, R.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Li, R. J.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Li, S. S.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Li, X.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Li, Z.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liao, C.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liu, D.

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Liu, F.

Liu, L. W.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Liu, P. K.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Liu, S.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Liu, W.

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Liu, Y. Q.

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

Lopez-Diaz, D.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Luchinin, A. G.

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Ma, T. J.

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Massuda, A.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Masters, D.

Matsui, T.

McKinney, R. W.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Mendis, R.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Min, S. H.

Mittleman, D. M.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Monnai, Y.

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Murdia, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Ochiai, T.

Ohtaka, K.

Okajima, A.

Palmer, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Park, G. S.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Prohaska, R.

Roques-Carmes, C.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Ruan, C. J.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Salisbury, W. W.

Sambles, J. R.

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

Sattorov, M.

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

A. Bera, R. K. Barik, M. Sattorov, O. Kwon, S. H. Min, I. K. Baek, and G. S. Park, “Surface-coupling of Cerenkov radiation from a modified metallic metamaterial slab via Brillouin-band folding,” Opt. Express 22(3), 3039–3044 (2014).
[Crossref]

Schmogrow, R.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Shih, I.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

Soljacic, M.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Sun, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Tai, L.

Tang, H. H.

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

Tessmann, A.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tucek, J. C.

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

Wang, H.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Wang, J. G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Wang, M.

Wang, Y.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Xi, H. Z.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Xiao, S.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Xu, Z.

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

Yang, Y.

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Yang, Z.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Ye, Y.

Yin, X. G.

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Zhang, C. Y.

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Zhang, K.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Zhang, P.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Zhou, J.

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

Zhou, L.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Zhou, Y.

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

Y. Zhang, Y. Zhou, and L. Dong, “THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure,” Opt. Express 21(19), 21951–21960 (2013).
[Crossref]

Zhu, G.

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

Zhu, J. F.

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Zwick, T.

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Photonics (1)

A. Massuda, C. Roques-Carmes, Y. Yang, S. E. Kooi, Y. Yang, C. Murdia, and M. Soljačić, “Smith–Purcell radiation from low-energy electrons,” ACS Photonics 5(9), 3513–3518 (2018).
[Crossref]

Adv. Opt. Mater. (1)

S. Kim, I. K. Baek, R. Bhattacharya, D. Hong, M. Sattorov, A. Bera, and G. S. Park, “High-Q metallic Fano metamaterial for highly efficient Cerenkov lasing,” Adv. Opt. Mater. 6(12), 1800041 (2018).
[Crossref]

Appl. Phys. Lett. (2)

H. H. Tang, T. J. Ma, and P. K. Liu, “Experimental demonstration of ultra-wideband and high-efficiency terahertz spoof surface plasmon polaritons coupler,” Appl. Phys. Lett. 108(19), 191903 (2016).
[Crossref]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80(13), 2410–2412 (2002).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microwave Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50(3), 910–928 (2002).
[Crossref]

IEEE Trans. Plasma Sci. (3)

Y. Q. Liu, C. H. Du, and P. K. Liu, “Terahertz electronic source based on spoof surface plasmons on the doubly corrugated metallic waveguide,” IEEE Trans. Plasma Sci. 44(12), 3288–3294 (2016).
[Crossref]

Y. Q. Liu, L. B. Kong, C. H. Du, and P. K. Liu, “A terahertz electronic source based on the spoof surface plasmon with subwavelength metallic grating,” IEEE Trans. Plasma Sci. 44(6), 930–937 (2016).
[Crossref]

J. Zhou, D. Liu, C. Liao, and Z. Li, “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci. 37(10), 2002–2011 (2009).
[Crossref]

J. Appl. Phys. (1)

W. Liu, S. Gong, Y. Zhang, J. Zhou, P. Zhang, and S. Liu, “Free electron terahertz wave radiation source with two-section periodical waveguide structures,” J. Appl. Phys. 111(6), 063107 (2012).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref]

Nat. Photonics (3)

S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

N. J. Karl, R. W. McKinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

New J. Phys. (2)

W. Liu and Z. Xu, “Special Smith–Purcell radiation from an open resonator array,” New J. Phys. 16(7), 073006 (2014).
[Crossref]

J. F. Zhu, C. H. Du, L. Y. Bao, and P. K. Liu, “Regenerated amplification of terahertz spoof surface plasmon radiation,” New J. Phys. 21(3), 033021 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Optica (1)

Phys. Commun. (1)

I. F. Akyildiz, J. M. Jornet, and C. Han, “Terahertz band: next frontier for wireless communications,” Phys. Commun. 12, 16–32 (2014).
[Crossref]

Phys. Rev. Lett. (1)

M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, “Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field,” Phys. Rev. Lett. 100(1), 015101 (2008).
[Crossref]

Sci. Rep. (4)

H. Z. Xi, J. G. Wang, Z. C. He, G. Zhu, Y. Wang, H. Wang, Z. G. Chen, R. Li, and L. W. Liu, “Continuous-wave Y-band planar BWO with wide tunable bandwidth,” Sci. Rep. 8(1), 348 (2018).
[Crossref]

R. J. Li, C. J. Ruan, A. K. Fahad, C. Y. Zhang, and S. S. Li, “Broadband and high-power terahertz radiation source based on extended interaction klystron,” Sci. Rep. 9(1), 4584 (2019).
[Crossref]

Y. Zhang, Y. Zhou, Y. Gang, G. Jiang, and Z. Yang, “Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure,” Sci. Rep. 7(1), 41116 (2017).
[Crossref]

L. B. Kong, C. P. Huang, C. H. Du, P. K. Liu, and X. G. Yin, “Enhancing spoof surface-plasmons with gradient metasurfaces,” Sci. Rep. 5(1), 8772 (2015).
[Crossref]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref]

Other (3)

J. C. Tucek, M. A. Basten, D. A. Gallagher, and K. E. Kreischer, “Operation of a compact 1.03 THz power amplifier,” in Proceedings of IEEE International Vacuum Electronics Conference (IEEE, 2016), pp. 1–2.

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

CST Corporation, “CST PS Tutorials,” http://www.cst-china.cn .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Model for the free-electron beam-scanning THz radiation source. A rod array is set above the metallic grating. The free electron bunch moves through the gap between the rod array and metallic grating. The operation voltage of the free electron is 36 kV (${v_e} = 0.357c$). (b) Diffraction relation between the wavenumbers of the SSP and propagation waves. Dispersion curves of the (c) metallic grating and (d) metallic grating with the loaded rod array. The electron beam line and interaction point are indicated in the dispersion diagrams.
Fig. 2.
Fig. 2. Simulation of the coherent THz radiation. (a) Radiation frequency spectrum probed in the free space. (b) Electric contour EZ at the radiation frequency.
Fig. 3.
Fig. 3. Simulation results with different radii; g = 50 µm, operation voltage U = 36 kV (ve = 0375c). (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the coherent radiation and ordinary SPR generated by the rod array.
Fig. 4.
Fig. 4. Simulation results with different gaps. The radius of the rod array R is 75 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and field intensity changes with the gap. (b) Multi- and single-frequency radiation spectra with different gaps. (c) Dispersion curves of the metallic grating loaded with the rod array with g = 20 µm.
Fig. 5.
Fig. 5. Simulation results with different radii. The gap between the rod array and metallic grating is set to 20 µm, while the operation voltage U is 36 kV. (a) Radiation frequency and intensity variations with the radius. (b) Frequency spectra of the multi-frequency radiation and ordinary SPR with a different radius of R = 75 µm.
Fig. 6.
Fig. 6. Simulation results with different operation voltages. The gap between the rod array and metallic grating is set to 50 µm, R = 75 µm, p = 300 µm. (a) Distribution of the radiation frequency at different operation frequencies. (b) Variations in interaction frequency and field intensity with the operation voltage.
Fig. 7.
Fig. 7. Simulation results with different periods of the rod array; g = 50 µm, R = 75 µm. Brillouin zone distributions at (a) p = 3d and (b) p = 4d. (c) Probed radiation spectra at different periods of the rod array at far field.
Fig. 8.
Fig. 8. Beam-scanning characteristic in the THz range. The parameters of the rod array are R = 125 µm, p = 500 µm, and g = 70 µm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Radiation angles at different operation frequencies. (c) Directional charts at different operation frequencies.
Fig. 9.
Fig. 9. Simulated and experimentally measured radiation properties. The parameters of the rod array are R = 7.8 mm, p = 23 mm, g = 7 mm, d = 2 mm, a = 1 mm, and h = 5.2 mm. (a) Brillouin diagram of the metallic grating with the loaded rod array. (b) Beam-scanning characteristic in the microwave range. (c) Schematic of the model used for the experimental verification. A monopole antenna is used to mimic the free electron to excite the SSP, while a horn antenna is used to receive the radiation signal. (d) Fabricated prototype. (e) Simulated and experimental results.
Fig. 10.
Fig. 10. Simulation results obtained by considering the beam–wave interaction. (a) Output power variations with the simulation time. Inset: beam energy evolution with the structure length when the power is stable. (b) Frequency spectrum of the output power. Inset: magnetic field profile.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 k x n n = S a 2 ( k z n a 2 ) = d a cot ( k 0 h ) ,
ω = v e k z ,
v e = c 1 1 / 1 ( 1 + e U m 0 c 2 ) 2 ( 1 + e U m 0 c 2 ) 2 ,
k z 0 + 2 n π L = k 0 cos θ ,
k z 0 = ω v e ,
k 0 = ω c .
c f = ( c v e cos θ ) L n ,

Metrics