Abstract

The energy-dispersive X-ray diffraction technique can be more practical and accurate for security applications such as detecting drugs and explosives. Here, an accurate multivariate discriminant analysis (MDA) method is used to identify the energy-dispersive X-ray diffraction spectra of illicit contraband. MDA is a comprehensive algorithm based on the principal component analysis algorithm, spectral angle matching method, and correlation coefficient method. Experiments are performed to acquire the diffracted spectra of drugs and common daily necessities. The accurate identification of models for an unknown substance can indicate the substance type in an already established database. Even in the case of shielding, the concealed object can be correctly identified, and the identification accuracy improved much compared with other algorithms.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and quantitative analysis of X-ray transmission and backscatter imaging aimed at security inspection

Shengling Huang, Xin Wang, Yifan Chen, Jie Xu, Tian Tang, and Baozhong Mu
Opt. Express 27(2) 337-349 (2019)

Spectral unmixing method for multi-pixel energy dispersive x-ray diffraction systems

Tianyi YangDai and Li Zhang
Appl. Opt. 56(4) 907-915 (2017)

Detection and identification of drugs under real conditions by using noisy terahertz broadband pulse

Vyacheslav A. Trofimov and Svetlana A. Varentsova
Appl. Opt. 55(33) 9605-9618 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
    [Crossref]
  2. G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
    [Crossref]
  3. Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
    [Crossref]
  4. K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
    [Crossref]
  5. G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
    [Crossref]
  6. E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
    [Crossref]
  7. C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
    [Crossref]
  8. Y. Jiang and P. Liu, “Feature extraction for identification of drug and explosive concealed by body packing based on positive matrix factorization,” Measurement 47, 193–199 (2014).
    [Crossref]
  9. E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
    [Crossref]
  10. M. Partridge and M. Jabri, “Robust principal component analysis,” J. Assoc. Comput. Mach. 58(3), 11 (2011).
  11. A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
    [Crossref]
  12. P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
    [Crossref]
  13. J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
    [Crossref]
  14. D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
    [Crossref]
  15. E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
    [Crossref]
  16. B. C. Turton, “A novel variant of the Savitzky-Golay filter for spectroscopic applications,” Meas. Sci. Technol. 3(9), 858–863 (1992).
    [Crossref]
  17. Powder Diffraction File, JCPDS, International Centre for Diffraction Data, Pennsylvania (1980).

2018 (1)

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

2014 (1)

Y. Jiang and P. Liu, “Feature extraction for identification of drug and explosive concealed by body packing based on positive matrix factorization,” Measurement 47, 193–199 (2014).
[Crossref]

2013 (1)

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

2012 (1)

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref]

2011 (1)

M. Partridge and M. Jabri, “Robust principal component analysis,” J. Assoc. Comput. Mach. 58(3), 11 (2011).

2010 (2)

A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
[Crossref]

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

2009 (3)

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

2008 (1)

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
[Crossref]

2007 (1)

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

2004 (2)

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
[Crossref]

1994 (1)

M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
[Crossref]

1992 (1)

B. C. Turton, “A novel variant of the Savitzky-Golay filter for spectroscopic applications,” Meas. Sci. Technol. 3(9), 858–863 (1992).
[Crossref]

Benesty, J.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
[Crossref]

Bradley, D. A.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref]

Chen, J.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
[Crossref]

Chen, Y. F.

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

Christodoulou, C.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Cook, E.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

Cook, E. J.

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Crespy, C.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Dennison, P. E.

P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
[Crossref]

Desai, H.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Dicken, A.

A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
[Crossref]

Duvauchelle, P.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Evans, P.

A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
[Crossref]

Flynn, D. O.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Fong, R.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

Gent, C.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

George, L.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

Gordon, J.

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

Griffiths, J. A.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Halligan, K. Q.

P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
[Crossref]

Harding, G.

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

Hardwick, S.

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Herr, M. D.

M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
[Crossref]

Hills, D.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Horrocks, J.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

Horrocks, J. A.

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Huang, Y.

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
[Crossref]

Jabri, M.

M. Partridge and M. Jabri, “Robust principal component analysis,” J. Assoc. Comput. Mach. 58(3), 11 (2011).

Jiang, Y.

Y. Jiang and P. Liu, “Feature extraction for identification of drug and explosive concealed by body packing based on positive matrix factorization,” Measurement 47, 193–199 (2014).
[Crossref]

Kaftandjian, V.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Kosciesza, D.

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

Koutalonis, M.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Lamser, D. G.

M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
[Crossref]

Liu, P.

Y. Jiang and P. Liu, “Feature extraction for identification of drug and explosive concealed by body packing based on positive matrix factorization,” Measurement 47, 193–199 (2014).
[Crossref]

Mcinerney, J. J.

M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
[Crossref]

Mu, B. Z.

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

Pani, S.

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Partridge, M.

M. Partridge and M. Jabri, “Robust principal component analysis,” J. Assoc. Comput. Mach. 58(3), 11 (2011).

Ponard, P.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Reid, C. B.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Roberts, D. A.

P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
[Crossref]

Rogers, K.

A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
[Crossref]

Seller, P.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Song, Q. H.

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

Soulez, F.

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Speller, R.

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

Speller, R. D.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

Strecker, H.

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

Turton, B. C.

B. C. Turton, “A novel variant of the Savitzky-Golay filter for spectroscopic applications,” Meas. Sci. Technol. 3(9), 858–863 (1992).
[Crossref]

Veale, M. C.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Wang, X.

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

Wells, K.

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref]

Wilkinson, D.

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

Wilson, M. D.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Wong, B.

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

Xu, J.

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

AIP Adv. (1)

Y. F. Chen, X. Wang, Q. H. Song, J. Xu, and B. Z. Mu, “Development of a high-energy-resolution EDXRD system with a CdTe detector for security inspection,” AIP Adv. 8(10), 105113 (2018).
[Crossref]

Appl. Radiat. Isot. (3)

K. Wells and D. A. Bradley, “A review of X-ray explosives detection techniques for checked baggage,” Appl. Radiat. Isot. 70(8), 1729–1746 (2012).
[Crossref]

E. Cook, R. Fong, J. Horrocks, D. Wilkinson, and R. Speller, “Energy dispersive X-ray diffraction as a means to identify illicit materials: a preliminary optimisation study,” Appl. Radiat. Isot. 65(8), 959–967 (2007).
[Crossref]

A. Dicken, K. Rogers, and P. Evans, “The separation of X-ray diffraction patterns for threat detection,” Appl. Radiat. Isot. 68(3), 439–443 (2010).
[Crossref]

Crime Sci. (1)

D. O. Flynn, H. Desai, C. B. Reid, C. Christodoulou, M. D. Wilson, M. C. Veale, P. Seller, D. Hills, B. Wong, and R. D. Speller, “Identification of simulants for explosives using pixellated X-ray diffraction,” Crime Sci. 2(1), 4 (2013).
[Crossref]

IEEE Trans. Audio Speech Lang. Process. (1)

J. Benesty, J. Chen, and Y. Huang, “On the importance of the Pearson correlation coefficient in noise reduction,” IEEE Trans. Audio Speech Lang. Process. 16(4), 757–765 (2008).
[Crossref]

IEEE Trans. Med. Imaging (1)

M. D. Herr, J. J. Mcinerney, and D. G. Lamser, “A flying spot X-ray system for Compton backscatter imaging,” IEEE Trans. Med. Imaging 13(3), 461–469 (1994).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

E. J. Cook, S. Pani, L. George, S. Hardwick, J. A. Horrocks, and R. D. Speller, “Multivariate Data Analysis for Drug Identification,” IEEE Trans. Nucl. Sci. 56(3), 1459–1464 (2009).
[Crossref]

J. Assoc. Comput. Mach. (1)

M. Partridge and M. Jabri, “Robust principal component analysis,” J. Assoc. Comput. Mach. 58(3), 11 (2011).

Meas. Sci. Technol. (1)

B. C. Turton, “A novel variant of the Savitzky-Golay filter for spectroscopic applications,” Meas. Sci. Technol. 3(9), 858–863 (1992).
[Crossref]

Measurement (1)

Y. Jiang and P. Liu, “Feature extraction for identification of drug and explosive concealed by body packing based on positive matrix factorization,” Measurement 47, 193–199 (2014).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. A (1)

C. Crespy, P. Duvauchelle, V. Kaftandjian, F. Soulez, and P. Ponard, “Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization,” Nucl. Instrum. Methods Phys. Res., Sect. A 623(3), 1050–1060 (2010).
[Crossref]

Proc. SPIE (2)

G. Harding, H. Strecker, D. Kosciesza, and J. Gordon, “Detector considerations relevant to x-ray diffraction imaging for security screening applications,” Proc. SPIE 7306, 730619 (2009).
[Crossref]

E. J. Cook, J. A. Griffiths, M. Koutalonis, C. Gent, S. Pani, J. A. Horrocks, L. George, S. Hardwick, and R. Speller, “Illicit drug detection using energy dispersive x-ray diffraction,” Proc. SPIE 7310, 73100I (2009).
[Crossref]

Radiat. Phys. Chem. (1)

G. Harding, “X-ray scatter tomography for explosives detection,” Radiat. Phys. Chem. 71(3–4), 869–881 (2004).
[Crossref]

Remote Sens. Environ. (1)

P. E. Dennison, K. Q. Halligan, and D. A. Roberts, “A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper,” Remote Sens. Environ. 93(3), 359–367 (2004).
[Crossref]

Other (1)

Powder Diffraction File, JCPDS, International Centre for Diffraction Data, Pennsylvania (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. The geometry of the experimental system.
Fig. 2.
Fig. 2. Identification process flow chart. “Danger” means that the test sample is a substance present in the database. “Non-suspicious” means that the test sample is not in the database.
Fig. 3.
Fig. 3. EDXRD profiles of NaCl (a), paracetamol (b), and methcathinone (c) in the effective detection area. The window value of the S–G filter is 5. The diffracted spectra of NaCl measured at three positions (d). The sample in position 1 is at the left end of the effective range (the distance from the sample to P2 is 252.5 mm), the sample in the position 2 is at the center of the effective range (the distance from the sample to P2 is 280 mm), and the sample in the position 3 is at the right end of the effective range (the distance from the sample to P2 is 307.5 mm).
Fig. 4.
Fig. 4. Identification result of NaCl with SAM (a), correlation coefficient (b), PCA (c), and MDA (d). The number of substances in the database is 80, and the top five substances most similar to the test sample are arranged in the 1–5 order.
Fig. 5.
Fig. 5. Identification result of paracetamol with SAM (a), correlation coefficient (b), PCA (c), and MDA (d). The number of substances in the database is 80, and the top five substances most similar to the test sample are arranged in the 1–5 order.
Fig. 6.
Fig. 6. Identification result of NaCl at three positions with MDA. The number of substances in the database is 80, and the top five substances most similar to the test sample are arranged in the 1–5 order. The sample in position 1 is at the left end of the effective range, the sample in the position 2 is at the center of the effective range, and the sample in the position 3 is at the right end of the effective range.
Fig. 7.
Fig. 7. Identification result of NaCl (a) and paracetamol (b). The number of substances in the database is 80, and the four colors represent the four algorithms. Each algorithm shows the most similar substance and the second similar substance in the database.
Fig. 8.
Fig. 8. The suitcase for drugs with occlusion.
Fig. 9.
Fig. 9. Identification result of methcathinone. The number of the substances in the database is 5 (morphine, ketamine, N-acetylanthranilic acid, anthranilic acid, and methcathinone).
Fig. 10.
Fig. 10. Correlation p calculated by the MDA of five materials. The number of the substances in the database is 5 (morphine, ketamine, N-acetylanthranilic acid, anthranilic acid, and methcathinone). The test sample is methcathinone without occlusion, methcathinone with occlusion, milk powder, flour, and bean powder.

Tables (1)

Tables Icon

Table 1. Identification results, including the case with several occlusions (Y = identified; N = not identified).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

p = ( s t d ) g ( cos α ) e ( | r | ) f
C m × m = cov ( Y n × m ) = 1 n 1 Y T Y
s t d = j = 1 q ( t j x i j ) 2 ( 1 i n )
cos α = i = 1 1024 M i N i i = 1 1024 M i 2 i = 1 1024 N i 2
| r | = i = 1 1024 ( M i M ¯ ) i = 1 1024 ( N i N ¯ ) i = 1 1024 ( M i M ¯ ) 2 i = 1 1024 ( N i N ¯ ) 2
E = h c 2 d sin ( θ / 2 )

Metrics