Abstract

We introduce a metasurface to modify the reflection phase for multispectral microwave absorbers. General quantitive design criteria are proposed by carrying out field analysis, so that design of multispectral microwave absorber can be effectively realized. Optimal design process is discussed to develop an understanding of the absorbing mechanism. Experiment results show that the absorber having only 0.015 times the wavelength at the center frequency can simultaneously achieve high absorption in the microwave, visible light and near-infrared light bands. Multispectral absorption comes with added features of flexibility, ultrathin thickness and a light weight that make it a powerful candidate in advanced stealth application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Transparent transmission-selective radar-infrared bi-stealth structure

Shuomin Zhong, Lijie Wu, Taijun Liu, Jifu Huang, Wei Jiang, and Yungui Ma
Opt. Express 26(13) 16466-16476 (2018)

Rounding corners of nano-square patches for multispectral plasmonic metamaterial absorbers

Sencer Ayas, Gokhan Bakan, and Aykutlu Dana
Opt. Express 23(9) 11763-11770 (2015)

Metasurface Salisbury screen: achieving ultra-wideband microwave absorption

Ziheng Zhou, Ke Chen, Junming Zhao, Ping Chen, Tian Jiang, Bo Zhu, Yijun Feng, and Yue Li
Opt. Express 25(24) 30241-30252 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
    [Crossref]
  2. B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
    [Crossref] [PubMed]
  3. Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).
  4. R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
    [Crossref] [PubMed]
  5. J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–20 (2011).
    [Crossref]
  6. Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
    [Crossref]
  7. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
    [Crossref]
  8. S. C. Fan and Y. L. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
    [Crossref]
  9. B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
    [Crossref]
  10. C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
    [Crossref]
  11. V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
    [Crossref]
  12. K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
    [Crossref]
  13. F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
    [Crossref]
  14. E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3(5), 1238–1248 (2009).
    [Crossref] [PubMed]
  15. S. H. Hosseini and P. Zamani, “Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites,” J. Magn. Magn. Mater. 397, 205–212 (2016).
    [Crossref]
  16. D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
    [Crossref]
  17. D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
    [Crossref] [PubMed]
  18. M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
    [Crossref]
  19. R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
    [Crossref]
  20. Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
    [Crossref] [PubMed]
  21. M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
    [Crossref]
  22. M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
    [Crossref] [PubMed]
  23. Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
    [Crossref]
  24. Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
    [Crossref] [PubMed]
  25. X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
    [Crossref] [PubMed]
  26. L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
    [Crossref]
  27. X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
    [Crossref] [PubMed]
  28. L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
    [Crossref]
  29. W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
    [Crossref]
  30. J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley, 1998).
  31. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
    [Crossref]
  32. R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
    [Crossref]
  33. B. A. Munk, Frequency Selective Surfaces - Theory and Design (Wiley, 2005).
  34. J. C. Huang, “Carbon black filled conducting polymers and polymer blends,” Adv. Polym. Technol. 21(4), 299–313 (2002).
    [Crossref]

2019 (6)

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

2018 (8)

X. Wang, Q. Ma, L. Wu, J. Guo, S. Lu, X. Dai, and Y. Xiang, “Tunable terahertz/infrared coherent perfect absorption in a monolayer black phosphorus,” Opt. Express 26(5), 5488–5496 (2018).
[Crossref] [PubMed]

X. Wang, Y. Liang, L. Wu, J. Guo, X. Dai, and Y. Xiang, “Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene,” Opt. Lett. 43(17), 4256–4259 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
[Crossref] [PubMed]

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

S. C. Fan and Y. L. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

2017 (5)

J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
[Crossref]

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

2016 (3)

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

S. H. Hosseini and P. Zamani, “Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites,” J. Magn. Magn. Mater. 397, 205–212 (2016).
[Crossref]

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

2015 (1)

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

2014 (1)

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

2012 (1)

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

2011 (1)

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–20 (2011).
[Crossref]

2010 (1)

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

2009 (1)

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3(5), 1238–1248 (2009).
[Crossref] [PubMed]

2003 (1)

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

2002 (1)

J. C. Huang, “Carbon black filled conducting polymers and polymer blends,” Adv. Polym. Technol. 21(4), 299–313 (2002).
[Crossref]

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Bharathi, B. S.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Bhattacharyya, S.

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

Bianco, G. V.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Bruno, G.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Capezzuto, P.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Caporale, A.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Capriati, V.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Chen, F.

Chen, X. Q.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Chen, X. S.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Cheng, Y.

Cheng, Y. Z.

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Crescitelli, A.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

D’Orazio, A.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Dai, X.

Dai, X. Y.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

De Crescenzi, M.

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

De Marcellis, A.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

De Nicola, F.

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

Deng, R.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Deng, R. X.

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

Di Meo, V.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Doss, S. M.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Esposito, E.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Fan, S. C.

S. C. Fan and Y. L. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

Ferrari, A. C.

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3(5), 1238–1248 (2009).
[Crossref] [PubMed]

Ge, C. C.

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Geng, J. P.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Ghosh, S.

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

Gong, R.

Gong, R. Z.

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Grande, M.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Gu, S.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

Gu, W.

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

Gung, Y. J.

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Guo, J.

Heng, L. Y.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Hines, P.

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

Hosseini, S. H.

S. H. Hosseini and P. Zamani, “Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites,” J. Magn. Magn. Mater. 397, 205–212 (2016).
[Crossref]

Hu, W. D.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Huang, J. C.

J. C. Huang, “Carbon black filled conducting polymers and polymer blends,” Adv. Polym. Technol. 21(4), 299–313 (2002).
[Crossref]

Hung, W. C.

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Janneh, M.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Ji, G.

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

Jia, F.

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Jiang, L. Y.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

Jin, R. H.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Ju Kim, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Kaiprath, Y.

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

Kang, M.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Lee, J.

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–20 (2011).
[Crossref]

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Lepore, M.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Li, B. W.

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Li, J. H.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Li, M.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Li, M. L.

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

Liang, J.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

Liang, X. L.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Liang, Y.

Lidorikis, E.

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3(5), 1238–1248 (2009).
[Crossref] [PubMed]

Lim, S.

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–20 (2011).
[Crossref]

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Liu, C. L.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Liu, Y. H.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

Lu, S.

Lu, W.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Luo, C. R.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

Luo, H.

Luo, Y. H.

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

Ma, H.

Ma, Q.

Manisankar, P.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Motta, N.

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

Muneer, B.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

Niu, X.

Palange, E.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Pang, Y.

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Pei, X. J.

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Perna, F. M.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Portaccio, M.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Premaratne, M.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Qi, D.

D. Qi, F. Chen, X. Wang, H. Luo, Y. Cheng, X. Niu, and R. Gong, “Effective strategy for visible-infrared compatible camouflage: surface graphical one-dimensional photonic crystal,” Opt. Lett. 43(21), 5323–5326 (2018).
[Crossref] [PubMed]

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Qu, S.

Quan, B.

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

Raj, J. A.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Rendina, I.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Ruvo, M.

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Sathappan, P.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Scalora, M.

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Selvam, S.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Shen, Y.

Sheng, J.

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

Shi, M. Y.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

Shi, Z.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Sikdar, D.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Song, L.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Song, L. X.

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

Song, Y. L.

S. C. Fan and Y. L. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

Srivastava, K. V.

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

Stalin, T.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Tan, S. J.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

Tang, W. W.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Ting, T. H.

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Velu, K. S.

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Wang, F.

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Wang, J.

Wang, L.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wang, Q. K.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

Wang, S.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Wang, S. W.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wang, X.

Wang, X. F.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Wu, C. J.

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Wu, K. H.

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Wu, L.

Wu, Z.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Xiang, S. S.

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

Xiang, Y.

Xiang, Y. J.

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

Xiao, F. J.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Xu, C.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

Xu, G.

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

Xu, G. Y.

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

Yang, C. C.

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Yang, J. J.

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

Yang, Z. H.

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

Yao, T. T.

J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
[Crossref]

Yao, Z. J.

J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
[Crossref]

Yi, Z. X.

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

Yu, A. Q.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Zamani, P.

S. H. Hosseini and P. Zamani, “Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites,” J. Magn. Magn. Mater. 397, 205–212 (2016).
[Crossref]

Zhang, B.

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

Zhang, J.

Zhang, K.

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

Zhang, T.

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Zhang, Z. L.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Zhao, X. P.

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

Zhou, J.

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Zhou, J. T.

J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
[Crossref]

Zhu, Q.

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

Zhu, W. R.

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

Zhu, Y. M.

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

Zou, Y. H.

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

ACS Nano (1)

E. Lidorikis and A. C. Ferrari, “Photonics with multiwall carbon nanotube arrays,” ACS Nano 3(5), 1238–1248 (2009).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. Wang, C. L. Liu, X. S. Chen, J. Zhou, W. D. Hu, X. F. Wang, J. H. Li, W. W. Tang, A. Q. Yu, S. W. Wang, and W. Lu, “Toward Sensitive Room-Temperature Broadband Detection from Infrared to Terahertz with Antenna-Integrated Black Phosphorus Photoconductor,” Adv. Funct. Mater. 27(7), 1604414 (2017).
[Crossref]

Adv. Polym. Technol. (1)

J. C. Huang, “Carbon black filled conducting polymers and polymer blends,” Adv. Polym. Technol. 21(4), 299–313 (2002).
[Crossref]

Appl Phys A-Mater (1)

Y. H. Liu, S. Gu, C. R. Luo, and X. P. Zhao, “Ultra-thin broadband metamaterial absorber,” Appl Phys A-Mater 108(1), 19–24 (2012).
[Crossref]

Appl. Phys. Express (1)

Z. Wu, X. Q. Chen, Z. L. Zhang, L. Y. Heng, S. Wang, and Y. H. Zou, “Design and optimization of a flexible water-based microwave absorbing metamaterial,” Appl. Phys. Express 12(5), 057003 (2019).
[Crossref]

Appl. Surf. Sci. (1)

J. T. Zhou, Z. J. Yao, and T. T. Yao, “Synthesis and electromagnetic property of Li0.35Zn0.3Fe2.35O4 grafted with polyaniline fibers,” Appl. Surf. Sci. 420, 154–160 (2017).
[Crossref]

Compos. Sci. Technol. (1)

C. C. Yang, Y. J. Gung, W. C. Hung, T. H. Ting, and K. H. Wu, “Infrared and microwave absorbing properties of BaTiO3/polyaniline and BaFe12O19/polyaniline composites,” Compos. Sci. Technol. 70(3), 466–471 (2010).
[Crossref]

Electron. Lett. (1)

J. Lee and S. Lim, “Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance,” Electron. Lett. 47(1), 8–20 (2011).
[Crossref]

IEEE Photonics J. (1)

W. R. Zhu, F. J. Xiao, M. Kang, D. Sikdar, X. L. Liang, J. P. Geng, M. Premaratne, and R. H. Jin, “MoS2 Broadband Coherent Perfect Absorber for Terahertz Waves,” IEEE Photonics J. 8, 5502207 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

R. W. Ziolkowski, “Design, fabrication, and testing of double negative metamaterials,” IEEE Trans. Antenn. Propag. 51(7), 1516–1529 (2003).
[Crossref]

M. L. Li, Z. X. Yi, Y. H. Luo, B. Muneer, and Q. Zhu, “A Novel Integrated Switchable Absorber and Radiator,” IEEE Trans. Antenn. Propag. 64(3), 944–952 (2016).
[Crossref]

J. Alloys Compd. (1)

M. Y. Shi, C. Xu, Z. H. Yang, J. Liang, L. Wang, S. J. Tan, and G. Y. Xu, “Achieving good infrared-radar compatible stealth property on metamaterial-based absorber by controlling the floating rate of Al type infrared coating,” J. Alloys Compd. 764, 314–322 (2018).
[Crossref]

J. Appl. Phys. (2)

S. Ghosh, S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, “Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model,” J. Appl. Phys. 115(10), 104503 (2014).
[Crossref]

S. C. Fan and Y. L. Song, “Bandwidth-enhanced polarization-insensitive metamaterial absorber based on fractal structures,” J. Appl. Phys. 123(8), 085110 (2018).
[Crossref]

J. Colloid Interface Sci. (1)

B. Quan, G. Xu, W. Gu, J. Sheng, and G. Ji, “Cobalt nanoparticles embedded nitrogen-doped porous graphitized carbon composites with enhanced microwave absorption performance,” J. Colloid Interface Sci. 533, 297–303 (2019).
[Crossref] [PubMed]

J. Magn. Magn. Mater. (1)

S. H. Hosseini and P. Zamani, “Preparation of thermal infrared and microwave absorber using SrTiO3/BaFe12O19/polyaniline nanocomposites,” J. Magn. Magn. Mater. 397, 205–212 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Qi, Y. Z. Cheng, X. Wang, F. Wang, B. W. Li, and R. Z. Gong, “Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility,” J. Phys. D Appl. Phys. 50(50), 505108 (2017).
[Crossref]

Mater. Des. (1)

R. X. Deng, K. Zhang, M. L. Li, L. X. Song, and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Mater. Des. 162, 119–129 (2019).
[Crossref]

Mater. Lett. (1)

K. S. Velu, J. A. Raj, P. Sathappan, B. S. Bharathi, S. M. Doss, S. Selvam, P. Manisankar, and T. Stalin, “Poly (ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell,” Mater. Lett. 240, 132–135 (2019).
[Crossref]

Materials (Basel) (1)

R. Deng, M. Li, B. Muneer, Q. Zhu, Z. Shi, L. Song, and T. Zhang, “Theoretical Analysis and Design of Ultrathin Broadband Optically Transparent Microwave Metamaterial Absorbers,” Materials (Basel) 11(1), 107 (2018).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (1)

B. Zhang, C. Xu, G. Y. Xu, S. S. Xiang, and Y. M. Zhu, “Thermochromic and infrared emissivity characteristics of cobalt doped zinc oxide for smart stealth in visible-infrared region,” Opt. Mater. 86, 464–470 (2018).
[Crossref]

Phys. Rev. B (1)

F. De Nicola, P. Hines, M. De Crescenzi, and N. Motta, “Thin randomly aligned hierarchical carbon nanotube arrays as ultrablack metamaterials,” Phys. Rev. B 96(4), 045409 (2017).
[Crossref]

Plasmonics (1)

L. Y. Jiang, J. Guo, Q. K. Wang, X. Y. Dai, and Y. J. Xiang, “Perfect Terahertz Absorption with Graphene Surface Plasmons in the Modified Otto Configuration,” Plasmonics 12(6), 1825–1831 (2017).
[Crossref]

Sci. Rep. (2)

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets,” Sci. Rep. 5(1), 14018 (2015).
[Crossref] [PubMed]

M. Grande, G. V. Bianco, F. M. Perna, V. Capriati, P. Capezzuto, M. Scalora, G. Bruno, and A. D’Orazio, “Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene,” Sci. Rep. 9(1), 5463 (2019).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

V. Di Meo, A. Caporale, A. Crescitelli, M. Janneh, E. Palange, A. De Marcellis, M. Portaccio, M. Lepore, I. Rendina, M. Ruvo, and E. Esposito, “Metasurface based on cross-shaped plasmonic nanoantennas as chemical sensor for surface-enhanced infrared absorption spectroscopy,” Sens. Actuators B Chem. 286, 600–607 (2019).
[Crossref]

Other (3)

Y. Z. Cheng, C. J. Wu, C. C. Ge, J. J. Yang, X. J. Pei, F. Jia, and R. Z. Gong, “An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction,” Appl Phys B-Lasers O123 (2017).

B. A. Munk, Frequency Selective Surfaces - Theory and Design (Wiley, 2005).

J. D. Jackson, Classical Electrodynamics, 3rd Edition (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of proposed configuration of MMAs in field analysis. (b) Required reflection phase range.
Fig. 2
Fig. 2 (a) Proposed structure multispectral absorber with the simplest metasurface. (b) Center frequency f0 (where φ0 equals 0) versus patch gap of the metasurface under different thickness h.
Fig. 3
Fig. 3 Optimized structure of compatible multispectral absorber: (a) structure and (b) periodic unit. (c) Relationship between the reflection phase and thickness h2. (d) The optimum surface resistance versus different h2 for above 90% absorption. (e) Relationship between surface resistance and thickness h2 when f0 = 10 GHz. (f) Absorption performance versus different h1. (g) Calculated equivalent permittivity and permeability of the proposed structure. (h) Absorption performance of the structure with and without UCF.
Fig. 4
Fig. 4 (a-e) Surface current distribution on the resistive sheet in the condition of different h2. (f) Surface loss distribution on top UCF. (g) Vector current distribution on top UCF, two metasurfaces and ground sheet.
Fig. 5
Fig. 5 (a) Top view of the fabricated metasurface. (b) Side view of the absorber. The thickness of the sample is measured as 0.45 mm. (c) Measured absorption and reflection phase φ0 of the absorber. (d-e) Measured absorption under different incident angles (θ) for (d) TE and (e) TM polarization. (f) Optical absorption of the absorber. (g-h) SEM morphologies of CCPF. (i) Pore size distribution in CCPF.
Fig. 6
Fig. 6 The calculated reflection phase of metasurface for (a) TE and (b) TM polarization under different oblique angle. (c) Theoretical and measured absorptance under oblique incidence.

Tables (2)

Tables Icon

Table 1 Surface resistance of CCPFs with different thickness values

Tables Icon

Table 2 Comparison of the ultra-thin absorbers working near 10 GHz

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E 0 = A 0 e jkz e x (z>0),
E 1 ={ A 1 e jk(zd)+j φ 1 e x (z>d) A 1 e jk(zd)+j φ 1 e x (0z<d) ,
E 2 = A 2 e jkz+j φ 2 e x (z>0),
E 2 (0)=( E 0 (0)+ E 1 (0) ) e j φ 0 ,
E 2 = A 0 e jkz+j φ 0 e x + A 1 e jk(dz)+j φ 0 +j φ 1 e x ,
e z ×( H( d + )H( d ) )=J(d),
k×E= μ 0 ωH,
J(d)=2 σ 0 E 1 (d),
J(d)= σ s ( E 0 (d)+ E 1 (d)+ E 2 (d) ),
2 A 1 e j φ 1 = σ s σ 0 ( A 0 e jkd + A 1 e j φ 1 + A 0 e jkd+j φ 0 + A 1 e j2kd+j φ 0 +j φ 1 ).
q 1 = 2cos( φ 0 /2kd ) [ 2 η r +1+cos( φ 0 2kd) ] 2 + sin 2 ( φ 0 2kd) ,
φ 1 =π+ φ 0 2 arctan sin( φ 0 2kd) 2 η r +1+cos( φ 0 2kd) .
S= 1 2 ε 0 μ 0 | E 0 | 2 = 1 2 σ 0 | E 0 | 2 .
Q= | J(d) | 2 2 σ s = 2 σ 0 2 | E 1 (d) | 2 σ s .
A= Q S = 8 η r [ 1+cos( φ 0 2kd) ] [ 2 η r +1+cos( φ 0 2kd) ] 2 + sin 2 ( φ 0 2kd) .
A 8 η r ( 1+cos φ 0 ) ( 2 η r +1+cos φ 0 ) 2 + sin 2 φ 0 .
Δλ< 2 π 2 | ln ρ 0 | d.
A TE = 8 η r cosθ( 1+cos φ θTE ) ( 2 η r cosθ+1+cos φ θTE ) 2 + sin 2 φ θTE ,
A TM = 8 η r cosθ ( 1+cos φ θTM ) ( 2 η r cosθ +1+cos φ θTM ) 2 + sin 2 φ θTM .
A TE = 8cosθ( 1+cos φ θTE ) ( 2cosθ+1+cos φ θTE ) 2 + sin 2 φ θTE ,
A TM = 8 cosθ ( 1+cos φ θTM ) ( 2 cosθ +1+cos φ θTM ) 2 + sin 2 φ θTM .
A TE = A TM = 4cosθ ( cosθ+1 ) 2 .

Metrics