Abstract

The decrease of laser-induced damage threshold (LIDT) when exposed with high number of laser pulses is a well-known phenomenon in dielectrics. In the femtosecond regime this fatigue is usually attributed to the incubation of laser-induced lattice defects. In this work, a computational model is used to combine the data from time-resolved digital holographic microscopy measurements together with results of S-on-1 laser-induced damage threshold test in order to investigate fatigue of ZrO$_2$ single layer coating. Two distinct damage modes were identified and shown to follow different fatigue behaviors: formation of catastrophic damage is highly nonlinear in time, while incubation of color-change mode appears to be linear in time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Employing oxygen-plasma posttreatment to improve the laser-induced damage threshold of ZrO2 films prepared by the electron-beam evaporation method

Dongping Zhang, Jianda Shao, Dawei Zhang, Shuhai Fan, Tianya Tan, and Zhengxiu Fan
Opt. Lett. 29(24) 2870-2872 (2004)

Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm

Wenwen Liu, Chaoyang Wei, Jianbo Wu, Zhenkun Yu, Hui Cui, Kui Yi, and Jianda Shao
Opt. Express 21(19) 22476-22487 (2013)

Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector

Lei Yuan, Yuanan Zhao, Guangqiang Shang, Chengren Wang, Hongbo He, Jianda Shao, and Zhengxiu Fan
J. Opt. Soc. Am. B 24(3) 538-543 (2007)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng., B 49(3), 175–190 (1997).
    [Crossref]
  2. D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
    [Crossref]
  3. “ISO 21254-2:2011 Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 2: Threshold determination,” Standard, International Organization for Standardization, Geneva, Switzerland (2011).
  4. S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
    [Crossref]
  5. M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
    [Crossref]
  6. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18(10), 2607–2616 (2001).
    [Crossref]
  7. J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
    [Crossref]
  8. M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
    [Crossref]
  9. L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
    [Crossref]
  10. C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
    [Crossref]
  11. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188 (2011).
    [Crossref]
  12. S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
    [Crossref]
  13. N. Šiaulys, L. Gallais, and A. Melninkaitis, “Direct holographic imaging of ultrafast laser damage process in thin films.,” Opt. Lett. 39(7), 2164–2167 (2014).
    [Crossref]
  14. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
    [Crossref]
  15. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20(5), 1307–1314 (1965).
  16. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
    [Crossref]
  17. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
    [Crossref]
  18. L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
    [Crossref]
  19. M. Fox, Optical Properties of Solids (Oxford University Press, 2010).
  20. J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
    [Crossref]
  21. R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
    [Crossref]
  22. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, 1995).
  23. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5(3), 648–659 (1988).
    [Crossref]
  24. T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
    [Crossref]
  25. S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. damage morphology,” Opt. Express 25(13), 15161–15178 (2017).
    [Crossref]
  26. X. Liu, Y. Zhao, D. Li, G. Hu, Y. Gao, Z. Fan, and J. Shao, “Characteristics of plasma scalds in multilayer dielectric films,” Appl. Opt. 50(21), 4226–4231 (2011).
    [Crossref]
  27. “ISO 21254-1:2011 Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles,” Standard, International Organization for Standardization, Geneva, Switzerland (2011).
  28. Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
    [Crossref]

2017 (1)

2015 (2)

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
[Crossref]

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

2014 (4)

N. Šiaulys, L. Gallais, and A. Melninkaitis, “Direct holographic imaging of ultrafast laser damage process in thin films.,” Opt. Lett. 39(7), 2164–2167 (2014).
[Crossref]

D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
[Crossref]

R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
[Crossref]

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

2011 (2)

2010 (1)

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

2009 (2)

2006 (2)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

2005 (3)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

2004 (1)

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref]

2001 (1)

1997 (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng., B 49(3), 175–190 (1997).
[Crossref]

1996 (1)

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

1995 (1)

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

1988 (1)

1965 (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20(5), 1307–1314 (1965).

Alessi, D. A.

Aliev, V. S.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Antonnetti, A.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Audebert, P.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Bataviciute, G.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Becker, M. F.

Blaschke, H.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[Crossref]

Bude, J. D.

Buschlinger, R.

R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
[Crossref]

Carr, C. W.

Chase, L. L.

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng., B 49(3), 175–190 (1997).
[Crossref]

Clapp, B.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Commandré, M.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188 (2011).
[Crossref]

D’Oliveira, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Daguzan, P.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Douti, D.-B.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
[Crossref]

Drazdys, R.

Emmert, L. A.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

Fan, Z.

Ferriera, J. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Fox, M.

M. Fox, Optical Properties of Solids (Oxford University Press, 2010).

Fu, X.

Gallais, L.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
[Crossref]

N. Šiaulys, L. Gallais, and A. Melninkaitis, “Direct holographic imaging of ultrafast laser damage process in thin films.,” Opt. Lett. 39(7), 2164–2167 (2014).
[Crossref]

A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188 (2011).
[Crossref]

Gao, Y.

Geindre, J. P.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Génin, F. Y.

Gritsenko, V. A.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Guizard, S.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Gulyaev, D. V.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Hafizi, B.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Haupt, D. L.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Hu, G.

Hutcheon, I. D.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Jasapara, J.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Jee, Y.

Jensen, L.

Jupé, M.

Kautek, W.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Keldysh, L. V.

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20(5), 1307–1314 (1965).

Kicas, S.

Kinney, J. H.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Kruger, J.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Laurence, T. A.

Lenzner, M.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
[Crossref]

Li, D.

Lindsey, E. F.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Liu, X.

Ly, S.

Mangote, B.

Manheimer, W.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Martin, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Martin, S.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Mažule, L.

Melninkaitis, A.

Mero, M.

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Meynadieri, P.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Mirauskas, J.

Negres, R. A.

Nolte, S.

R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
[Crossref]

Peñano, J. R.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Perevalov, T. V.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Peschel, U.

R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
[Crossref]

Petite, G.

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Pistor, T. V.

Pupka, E.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref]

Rigatti, A.

Ristau, D.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
[Crossref]

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[Crossref]

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Rudolph, W.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Sabbah, A. J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Salleo, A.

Santos, A. D.

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

Šciuka, M.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Shao, J.

Shen, N.

Šiaulys, N.

Sirutkaitis, V.

Smalakys, L.

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

Sprangle, P.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Starke, K.

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Stolz, C. J.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[Crossref]

Sun, Z.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
[Crossref]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, 1995).

Tolenis, T.

Turowski, M.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[Crossref]

Walser, R. M.

Wong, J.

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

Yelisseyev, A. P.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Zeller, J.

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

Zerrad, M.

Zhao, Y.

Zhuravlev, K. S.

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Zigler, A.

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Process. (1)

M. Mero, A. J. Sabbah, J. Zeller, and W. Rudolph, “Femtosecond dynamics of dielectric films in the pre-ablation regime,” Appl. Phys. A: Mater. Sci. Process. 81(2), 317–324 (2005).
[Crossref]

EPL (1)

S. Guizard, P. Martin, P. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. D. Santos, and A. Antonnetti, “Contrasted behaviour of an electron gas in MgO, Al2O3 and SiO2,” EPL 29(5), 401–406 (1995).
[Crossref]

J. Appl. Phys. (4)

L. Gallais, D.-B. Douti, M. Commandré, G. Batavičiūtė, E. Pupka, M. Ščiuka, L. Smalakys, V. Sirutkaitis, and A. Melninkaitis, “Wavelength dependence of femtosecond laser-induced damage threshold of optical materials,” J. Appl. Phys. 117(22), 223103 (2015).
[Crossref]

L. A. Emmert, M. Mero, and W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[Crossref]

T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, “The origin of 2.7 eV blue luminescence band in zirconium oxide,” J. Appl. Phys. 116(24), 244109 (2014).
[Crossref]

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117(7), 073102 (2015).
[Crossref]

J. Exp. Theor. Phys. (1)

L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20(5), 1307–1314 (1965).

J. Non-Cryst. Solids (1)

J. Wong, J. L. Ferriera, E. F. Lindsey, D. L. Haupt, I. D. Hutcheon, and J. H. Kinney, “Morphology and microstructure in fused silica induced by high fluence ultraviolet 3$\omega$ω (355 nm) laser pulses,” J. Non-Cryst. Solids 352(3), 255–272 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

S. Guizard, P. Martin, G. Petite, P. D’Oliveira, and P. Meynadieri, “Time-resolved study of laser-induced colour centres in SiO2,” J. Phys.: Condens. Matter 8(9), 1281–1290 (1996).
[Crossref]

Mater. Sci. Eng., B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng., B 49(3), 175–190 (1997).
[Crossref]

Opt. Eng. (2)

D.-B. Douti, L. Gallais, and M. Commandré, “Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses,” Opt. Eng. 53(12), 122509 (2014).
[Crossref]

M. Mero, B. Clapp, J. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73(3), 035101 (2006).
[Crossref]

R. Buschlinger, S. Nolte, and U. Peschel, “Self-organized pattern formation in laser-induced multiphoton ionization,” Phys. Rev. B 89(18), 184306 (2014).
[Crossref]

Phys. Rev. E (1)

J. R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, and A. Zigler, “Transmission of intense femtosecond laser pulses into dielectrics,” Phys. Rev. E 72(3), 036412 (2005).
[Crossref]

Phys. Rev. Lett. (1)

B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004).
[Crossref]

Proc. SPIE (1)

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[Crossref]

Other (4)

“ISO 21254-2:2011 Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 2: Threshold determination,” Standard, International Organization for Standardization, Geneva, Switzerland (2011).

M. Fox, Optical Properties of Solids (Oxford University Press, 2010).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Methods (Artech House, 1995).

“ISO 21254-1:2011 Lasers and laser-related equipment – Test methods for laser-induced damage threshold – Part 1: Definitions and general principles,” Standard, International Organization for Standardization, Geneva, Switzerland (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic representation of geometry of experiments.
Fig. 2.
Fig. 2. Schematic representation of modeled energy levels and transitions.
Fig. 3.
Fig. 3. Damage morphology images (Nomarski microscopy, 20x objective, high contrast) of the catastrophic mode. In a single pulse case (a) damage is visible as a heat affected zone. After ~10 laser pulses (b) damage is visible as melted and ablated spot about the size of the beam diameter. After 10$^2$-10$^6$ laser pulses (c) damage damage is visible as a melted and ablated spot about two times the size of beam diameter.
Fig. 4.
Fig. 4. Damage morphology images (Nomarski microscopy, 20x objective, high contrast) of the color-change mode. Damage is visible as red color-change about the size of the beam diameter for wide range of number of pulses (a)-(c).
Fig. 5.
Fig. 5. Characteristic damage curves for catastrophic and color-change modes in ZrO$_2$. Empirical fatigue model (27) was used to fit the curves. Color-change mode exhibits a much greater fatigue effect than the catastrophic mode (fatigue parameters S are respectively 0.81 and 0.97). Color-change mode becomes LIDT limiting mode after 100 laser pulses.
Fig. 6.
Fig. 6. Experimental data of relative transmittance and phase shift in ZrO$_2$. Solid lines represent exponential relaxation fits (see Table 2). (All curves are shifted by 1 ps in order to plot them on the logarithmic scale.)
Fig. 7.
Fig. 7. Experimental data and simulation of relative transmittance and phase shift in ZrO$_2$. (All curves are shifted by 1 ps in order to plot them on the logarithmic scale.
Fig. 8.
Fig. 8. Deposited energy for a single laser pulse of a given fluence. Energy deposition profile is determined largely by the order of multiphoton absorption with only slight corrections at higher fluences due to full Keldysh ionization model and impact ionization.
Fig. 9.
Fig. 9. Fits of fatigue models for characteristic damage curves of catastrophic failure and color-change modes.

Tables (3)

Tables Icon

Table 1. Peak fluence and peak intensity values of the single pulse time-resolved DHM experiment.

Tables Icon

Table 2. Exponential decay functions which where used to fit for change in transmittance and phase shift (solid lines in Fig. 6)

Tables Icon

Table 3. Fit parameters of the pump-probe model.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

N 0 t = w K ( I ) + 2 α N k w p h t N 0 w C B S T E ( N 0 , N S T E ) , N 1 t = w p h t N 0 w p h t N 1 w C B S T E ( N 1 , N S T E ) , N k 1 t = w p h t N k 2 w p h t N k 1 w C B S T E ( N k 1 , N S T E ) , N k t = w p h t N k 1 α N k w C B S T E ( N k , N S T E ) ,
N S T E t = w C B S T E ( N C B , N S T E ) ,
w C B S T E ( N C B , N S T E ) = N C B τ C B S T E ( 1 N S T E N S T E , m a x ) ,
ϵ c r i t = ( 1 + μ m V B ) ( E g a p + ϵ o s c ) ,
ϵ o s c = e 2 E 2 4 μ ω 2 ,
k = ϵ c r i t ω .
w p h t = σ e ln ( 2 ) ϵ c r i t 1 2 k 1 I .
P = P K + P C B + P S T E
P K = χ ( 3 ) | E | 2
P C B = ϵ 0 ω p , C B 2 ( ω 2 + i ω τ D ) E
ω p , C B = N C B e 2 ϵ 0 m C B
P S T E = ϵ 0 ω p , S T E 2 ( ω S T E 2 ω 2 i ω τ S T E ) E
ω p , S T E = N S T E e 2 ϵ 0 m S T E
D = ϵ 0 ϵ r ( 1 ) E + P K + P C B + P S T E = ϵ 0 ( ϵ r ( 1 ) + χ ( 3 ) | E | 2 ω p , C B 2 ω 2 + i ω τ C B + ω p , S T E 2 ω S T E 2 ω 2 i ω τ S T E ) E = ϵ 0 ϵ r E
ϵ r = ϵ r ( 1 ) + χ ( 3 ) | E | 2 ω p , C B 2 ω 2 + i ω τ C B + ω p , S T E 2 ω S T E 2 ω 2 i ω τ S T E
R e ( ϵ r ) = ϵ r ( 1 ) + χ ( 3 ) | E | 2 ω p 2 τ C B 2 1 + ω 2 τ C B 2 + ω p , S T E 2 ( ω S T E 2 ω 2 ) ( ω S T E 2 ω 2 ) 2 + ( ω τ S T E ) 2
ϵ r = R e ( ϵ r ) + i I m ( ϵ r ) = R e ( ϵ r ) + i σ ϵ 0 ω
σ = ϵ 0 ω I m ( ϵ r )
I m ( ϵ r ) = ω p 2 τ C B ω ( 1 + ω 2 τ C B 2 ) + ω p , S T E 2 ω τ S T E ( ω S T E 2 ω 2 ) 2 + ( ω τ S T E ) 2
J K E = σ K E 2 = E g a p w K
σ K = E g a p w K E 2
σ e f f = σ + σ K
× H = D t + σ E
× E = B t
D = ϵ E = ϵ 0 ϵ r E
B = μ H = μ 0 μ r H
F N = F 1 N S 1 ,
d n = d ( d d 1 ) / r d n 1 ,
d = d 1 + d 1 Δ d .
t n = t + ( t 1 t ) r t n 1 ,
t n d n ,
d n = d 1 n ,
t d n ,

Metrics