Abstract

Ytterbium-doped fiber (YDF) loaded with deuterium is used herein to mitigate mode instability. Experimental results reveal that this method can increase the mode instability threshold in a laser oscillator. Specifically, when the YDF was loaded with deuterium over two- and four-week periods, the mode instability threshold power increased from ∼459 W to ∼533 W (16%) and to ∼622 W (35%), respectively, but the respective laser efficiencies were almost unaffected (71.5% vs. 72.9% and 75.4%). In conclusion, deuterium loading is effective in the mitigation of mode instability. It is envisaged to be applied in the power scaling of high-power fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of gamma-ray radiation-induced photodarkening on mode instability degradation of an ytterbium-doped fiber amplifier

Yi Sha Chen, Hao Zhen Xu, Yin Bing Xing, Lei Liao, Yi Bo Wang, Fang Fang Zhang, Xing Long He, Hai Qing Li, Jing Gang Peng, Lv Yun Yang, Neng Li Dai, and Jin Yan Li
Opt. Express 26(16) 20430-20441 (2018)

1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities

Rumao Tao, Pengfei Ma, Xiaolin Wang, Pu Zhou, and Zejin Liu
Photon. Res. 3(3) 86-93 (2015)

Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme

Baolai Yang, Hanwei Zhang, Chen Shi, Xiaolin Wang, Pu Zhou, Xiaojun Xu, Jinbao Chen, Zejin Liu, and Qisheng Lu
Opt. Express 24(24) 27828-27835 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).
  2. D. Richardson, J. Nilsson, and W. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  3. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
    [Crossref]
  4. A. V. Smith and J. J. Smith, “Mode Instability in high power fiber amplifiers,”,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  5. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
    [Crossref]
  6. B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
    [Crossref]
  7. C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
    [Crossref]
  8. M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
    [Crossref]
  9. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref]
  10. H. J. Otto, F. Stutzki, T. Eidam, J. Limpert, and A. Tünnermann, “Mode instabilities: physical origin and mitigation strategies,” Proc. SPIE 8601(10), 86010F (2013).
    [Crossref]
  11. A. Tünnermann, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, and J. Limpert, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
    [Crossref]
  12. H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [Crossref]
  13. C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
    [Crossref]
  14. C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
    [Crossref]
  15. A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
    [Crossref]
  16. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Thermally induced mode coupling in rare-earth doped fiber amplifiers,” Opt. Lett. 37(12), 2382–2384 (2012).
    [Crossref]
  17. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
    [Crossref]
  18. R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
    [Crossref]
  19. B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
    [Crossref]
  20. Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
    [Crossref]
  21. K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
    [Crossref]
  22. K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
    [Crossref]
  23. O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
    [Crossref]
  24. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
    [Crossref]
  25. R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
    [Crossref]
  26. R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
    [Crossref]
  27. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref]
  28. B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
    [Crossref]
  29. N. Zhao, W. Li, J. Li, G. Zhou, and J. Li, “Elimination of the photodarkening effect in Yb-doped fiber laser with deuterium,” J. Lightwave Technol. 37(13), 3021–3026 (2019).
    [Crossref]
  30. J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
    [Crossref]
  31. R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1993), paper CPD20.
  32. P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
    [Crossref]
  33. M. Kuznetsov, O. Antipov, A. A. Fotiadi, and P. Mégret, “Electronic and thermal refractive index changes in ytterbium-doped fiber amplifiers,” Opt. Express 21(19), 22374–22388 (2013).
    [Crossref]
  34. M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
    [Crossref]
  35. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5
  36. M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
    [Crossref]
  37. R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

2019 (1)

2018 (3)

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

2017 (3)

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref]

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

2016 (2)

2015 (5)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

2014 (3)

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
[Crossref]

2013 (5)

2012 (5)

2011 (1)

2010 (1)

2008 (1)

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
[Crossref]

1994 (1)

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

1993 (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

1981 (1)

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Abramov, M.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).

Afzal, R.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Albert, J.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Alekseev, D.

Alkeskjold, T. T.

Andrejco, M.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5

Antipov, O.

Atkins, R. M.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1993), paper CPD20.

Babazadeh, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Beier, F.

Bilodeau, F.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Brar, K.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Broeng, J.

Cao, R.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Chen, G.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Chen, J.

Cheng, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Clarkson, W.

Courtney, S.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Dajani, I.

Detrio, J. A.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

DiGiovanni, D.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5

Dilley, C.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Eidam, T.

Engholm, M.

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
[Crossref]

Ferin, A.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).

Fernelius, N.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Fomin, V.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).

Fotiadi, A. A.

Gapontsev, V.

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).

Golshan, A. H.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hansen, K. R.

Heidariazar, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Hein, S.

Hejaz, K.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Henrie, J.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Hill, K. O.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Honea, E.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Huang, Z.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Hupel, C.

Jafari, N. T.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Jansen, F.

Jasapara, J.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5

Jauregui, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref]

A. Tünnermann, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, and J. Limpert, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref]

Jing, F.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Johnson, D. C.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Kuhn, S.

Kumar, B.

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

Kuznetsov, M.

Lægsgaard, J.

Lafouti, M.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Lemaire, P. J.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1993), paper CPD20.

Li, H.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Li, J.

Li, W.

Li, Z.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Liang, X.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Liem, A.

Limpert, J.

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

H. J. Otto, F. Stutzki, T. Eidam, J. Limpert, and A. Tünnermann, “Mode instabilities: physical origin and mitigation strategies,” Proc. SPIE 8601(10), 86010F (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

A. Tünnermann, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, and J. Limpert, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref]

Lin, H.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Lin, X.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Liu, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Liu, Z.

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

Lu, Q.

Ma, P.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

Malo, B.

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

Mégret, P.

Mizrahi, V.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1993), paper CPD20.

Modsching, N.

Nasirabad, R. R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Nilsson, J.

Nold, J.

Norin, L.

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
[Crossref]

Norouzey, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Otto, H. J.

Otto, H.-J.

Poozesh, R.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Proske, F.

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Richardson, D.

Robin, C.

Roohforouz, A.

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Sattler, B.

Savage-Leuchs, M.

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

Shi, C.

Smith, A. V.

Smith, J. J.

Stihler, C.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

Stutzki, F.

Su, R.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

Tao, R.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

Tünnermann, A.

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

H. J. Otto, F. Stutzki, T. Eidam, J. Limpert, and A. Tünnermann, “Mode instabilities: physical origin and mitigation strategies,” Proc. SPIE 8601(10), 86010F (2013).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref]

A. Tünnermann, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, and J. Limpert, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref]

Tyrtyshnyy, V.

Vershinin, O.

Wang, J.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Wang, X.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

Wang, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Ward, B.

Windeler, R.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5

Xiang, X.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Xing, Y.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Xu, S.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Xu, X.

Yang, B.

Yang, L.

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Yang, Z.

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

Zervas, M. N.

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
[Crossref]

Zhang, H.

Zhao, N.

N. Zhao, W. Li, J. Li, G. Zhou, and J. Li, “Elimination of the photodarkening effect in Yb-doped fiber laser with deuterium,” J. Lightwave Technol. 37(13), 3021–3026 (2019).
[Crossref]

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

Zhou, G.

Zhou, P.

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

Electron. Lett. (2)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

J. Albert, B. Malo, K. O. Hill, F. Bilodeau, and D. C. Johnson, “Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication,” Electron. Lett. 30(5), 442–444 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Tao, P. Ma, X. Wang, and P. Zhou, “Study of wavelength dependence of mode instability based on a semi-analytical model,” IEEE J. Quantum Electron. 51(8), 1–6 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Kumar, N. Fernelius, and J. A. Detrio, “Deuterium Treatment and Infrared Transmission Spectra of Fused Silica,” J. Am. Ceram. Soc. 64(12), C-178–C-180 (1981).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Mitigating of modal Instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength,” J. Opt. 17(4), 045504 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

K. Hejaz, A. Norouzey, R. Poozesh, A. Heidariazar, A. Roohforouz, R. R. Nasirabad, N. T. Jafari, A. H. Golshan, A. Babazadeh, and M. Lafouti, “Controlling mode instability in a 500 W ytterbium-doped fiber laser,” Laser Phys. 24(2), 025102 (2014).
[Crossref]

Laser Phys. Lett. (2)

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “Influence of core NA on thermal-induced mode instabilities in high power fiber amplifiers,” Laser Phys. Lett. 12(8), 085101 (2015).
[Crossref]

R. Tao, R. Su, P. Ma, X. Wang, and P. Zhou, “Suppressing mode instabilities by optimizing the fiber coiling methods,” Laser Phys. Lett. 14(2), 025101 (2017).
[Crossref]

Light: Sci. Appl. (1)

C. Stihler, C. Jauregui, A. Tünnermann, and J. Limpert, “Modal energy transfer by thermally induced refractive index gratings in Yb-doped fibers,” Light: Sci. Appl. 7(1), 59–70 (2018).
[Crossref]

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photonics 7(11), 861–867 (2013).
[Crossref]

Opt. Express (14)

A. V. Smith and J. J. Smith, “Mode Instability in high power fiber amplifiers,”,” Opt. Express 19(11), 10180–10192 (2011).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Physical origin of mode instabilities in high-power fiber laser systems,” Opt. Express 20(12), 12912–12925 (2012).
[Crossref]

B. Ward, C. Robin, and I. Dajani, “Origin of thermal modal instabilities in large mode area fiber amplifiers,” Opt. Express 20(10), 11407–11422 (2012).
[Crossref]

C. Jauregui, T. Eidam, H. J. Otto, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Temperature-induced index gratings and their impact on mode instabilities in high-power fiber laser systems,” Opt. Express 20(1), 440–451 (2012).
[Crossref]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, and J. Limpert, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref]

A. Tünnermann, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, and J. Limpert, “Passive mitigation strategies for mode instabilities in high-power fiber laser systems,” Opt. Express 21(16), 19375–19386 (2013).
[Crossref]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[Crossref]

C. Jauregui, C. Stihler, A. Tünnermann, and J. Limpert, “Pump-modulation-induced beam stabilization in high-power fiber laser systems above the mode instability threshold,” Opt. Express 26(8), 10691–10704 (2018).
[Crossref]

A. V. Smith and J. J. Smith, “Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers,” Opt. Express 20(22), 24545–24558 (2012).
[Crossref]

B. Yang, H. Zhang, C. Shi, X. Wang, P. Zhou, X. Xu, J. Chen, Z. Liu, and Q. Lu, “Mitigating transverse mode instability in all-fiber laser oscillator and scaling power up to 2.5 kW employing bidirectional-pump scheme,” Opt. Express 24(24), 27828–27835 (2016).
[Crossref]

O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
[Crossref]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref]

M. Kuznetsov, O. Antipov, A. A. Fotiadi, and P. Mégret, “Electronic and thermal refractive index changes in ytterbium-doped fiber amplifiers,” Opt. Express 21(19), 22374–22388 (2013).
[Crossref]

M. Kuznetsov, O. Vershinin, V. Tyrtyshnyy, and O. Antipov, “Low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 22(24), 29714–29725 (2014).
[Crossref]

Opt. Lett. (1)

Photonics Res. (2)

Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photonics Res. 5(2), 77–81 (2017).
[Crossref]

R. Tao, P. Ma, X. Wang, P. Zhou, and Z. Liu, “1.3  kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities,” Photonics Res. 3(3), 86–93 (2015).
[Crossref]

Proc. SPIE (4)

M. Engholm and L. Norin, “Reduction of photodarkening in Yb/Al-doped fiber lasers,” Proc. SPIE 6873, 68731E (2008).
[Crossref]

K. Brar, M. Savage-Leuchs, J. Henrie, S. Courtney, C. Dilley, R. Afzal, and E. Honea, “Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers,” Proc. SPIE 8961(1), 89611R (2014).
[Crossref]

H. J. Otto, F. Stutzki, T. Eidam, J. Limpert, and A. Tünnermann, “Mode instabilities: physical origin and mitigation strategies,” Proc. SPIE 8601(10), 86010F (2013).
[Crossref]

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 1051205 (2018).
[Crossref]

Other (4)

R. Cao, Y. Wang, G. Chen, N. Zhao, Y. Xing, Y. Liu, X. Lin, Y. Cheng, H. Li, L. Yang, and J. Li, “Investigation of photodarkening induced thermal load in Yb-doped fiber lasers,” IEEE Photonics Technol. Lett. (2019) (accepted).

R. M. Atkins, V. Mizrahi, and P. J. Lemaire, “Enhanced photo-induced refractive index changes in optical fibers via low temperature hydrogen loading,” Conference on Lasers and Electro-Optics OSA Technical Digest (Optical Society of America, 1993), paper CPD20.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photo-darkening of YB+3 fibers,” Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies Technical Digest (CD) (Optical Society of America, 2006), paper CTuQ5

V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, “Diffraction limited ultra-high-power fiber lasers,” in Lasers, Sources Relat. Photonic Devices, OSA Technical Digest Series (CD), paper AWA1 (Optical Society of America, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup of all-fiber laser oscillator pumped by 976 nm LDs. LD: Laser Diode; YDF: Ytterbium-doped Fiber; HR–FBG: High Reflectivity Fiber Bragg Grating; OC–FBG: Output Coupler Fiber Bragg Grating; CLS: Cladding Light Stripper; PD: Photo-detector.
Fig. 2.
Fig. 2. Correlation between (a) output power/standard deviation and (b) output power/efficiency with the pump power of the pristine fiber.
Fig. 3.
Fig. 3. (a) Time and (b) frequency domain signals of pristine fiber.
Fig. 4.
Fig. 4. (a) Laser performance of pristine fiber and deuterium loaded fiber, (b) laser power/efficiency versus pump power following a two-week deuterium loading period, and (c) corresponding plot following a four-week deuterium loading period.
Fig. 5.
Fig. 5. Time domain signal and frequency domain signals following two- and four-week deuterium loading periods. (a) Time domain signal following a two-week deuterium loading period, (b) frequency domain signal of deuterium loading following a two-week loading period, (c) time domain signal of deuterium following a four-week loading period, and (d) frequency domain signal of deuterium following a four-week loading period.
Fig. 6.
Fig. 6. Laser performance of deuterium loaded fibers and measurements after 24hours, 7days and 14days. (a) Laser performance following a two-week deuterium loading period and measurements after 24hours, 7days and 14days, (b) Laser performance following a four-week deuterium loading period and measurements after 24hours, 7days and 14days.

Metrics