Abstract

To solve the security problem of information transmission, we add a more complex key of variable RF amplifier gain to enhance the confidentiality of the chaotic optical communication system. In the system, the RF amplifier gain is variable. The numerical results indicate that the bit error rate of the eavesdropper is much higher than that of the authorized receiver. And the eavesdropper cannot decrease the BER by decreasing the mismatch of other parameters in the electro-optic oscillator gain. Such system can be used to realize communication with high level of privacy in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Security-enhanced chaotic communications with optical temporal encryption based on phase modulation and phase-to-intensity conversion

Ning Jiang, Anke Zhao, Yajun Wang, Shiqin Liu, Jianming Tang, and Kun Qiu
OSA Continuum 2(12) 3422-3437 (2019)

Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key

Qingchun Zhao, Yuncai Wang, and Anbang Wang
Appl. Opt. 48(18) 3515-3520 (2009)

Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation

Mengfan Cheng, Lei Deng, Hao Li, and Deming Liu
Opt. Express 22(5) 5241-5251 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
    [Crossref]
  2. P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19(24), 2056–2058 (1994).
    [Crossref]
  3. J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
    [Crossref]
  4. S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36(1), 35–39 (2000).
    [Crossref]
  5. L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
    [Crossref]
  6. K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27(12), 989–991 (2002).
    [Crossref]
  7. Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
    [Crossref]
  8. S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
    [Crossref]
  9. J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Opt. Express 17(22), 20124–20133 (2009).
    [Crossref]
  10. N. Jiang, A. Zhao, S. Liu, C. Xue, and K. Qiu, “Chaos synchronization and communication in closed-loop semiconductor lasers subject to common chaotic phase-modulated feedback,” Opt. Express 26(25), 32404–32416 (2018).
    [Crossref]
  11. M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
    [Crossref]
  12. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref]
  13. F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
    [Crossref]
  14. J.-Z. Zhang, A.-B. Wang, J.-F. Wang, and Y.-C. Wang, “Wavelength division multiplexing of chaotic secure and fiber-optic communications,” Opt. Express 17(8), 6357–6367 (2009).
    [Crossref]
  15. Y. Luo, L. Xia, Z. Xu, C. Yu, Q. Sun, W. Li, D. Huang, and D. Liu, “Optical chaos and hybrid WDM/TDM based large capacity quasi-distributed sensing network with real-time fiber fault monitoring,” Opt. Express 23(3), 2416–2423 (2015).
    [Crossref]
  16. R. J. Jones, S. Sivaprakasam, and K. A. Shore, “Integrity of semiconductor laser chaotic communications to naïve eavesdroppers,” Opt. Lett. 25(22), 1663–1665 (2000).
    [Crossref]
  17. A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32(15), 2134–2136 (2007).
    [Crossref]
  18. A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
    [Crossref]
  19. Q. Zhao, Y. Wang, and A. Wang, “Eavesdropping in chaotic optical communication using the feedback length of an external-cavity laser as a key,” Appl. Opt. 48(18), 3515–3520 (2009).
    [Crossref]
  20. R. M. Nguimdo, G. Verschaffelt, J. Danckaert, and G. Van der Sande, “Loss of time-delay signature in chaotic semiconductor ring lasers,” Opt. Lett. 37(13), 2541–2543 (2012).
    [Crossref]
  21. C. Xue, N. Jiang, Y. Lv, C. Wang, G. Li, S. Lin, and K. Qiu, “Security-enhanced chaos communication with time-delay signature suppression and phase encryption,” Opt. Lett. 41(16), 3690–3693 (2016).
    [Crossref]
  22. Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
    [Crossref]
  23. S. Stein and J. J. Jones, Modern communication principle with application to digital signaling. New York, NY, USA: McGraw-Hill, 1967.
  24. Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
    [Crossref]

2018 (1)

2016 (1)

2015 (2)

2012 (1)

2011 (1)

2009 (3)

2008 (1)

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

2007 (1)

2005 (3)

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

2004 (1)

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

2002 (2)

K. Kusumoto and J. Ohtsubo, “1.5-GHz message transmission based on synchronization of chaos in semiconductor lasers,” Opt. Lett. 27(12), 989–991 (2002).
[Crossref]

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

2000 (2)

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36(1), 35–39 (2000).
[Crossref]

R. J. Jones, S. Sivaprakasam, and K. A. Shore, “Integrity of semiconductor laser chaotic communications to naïve eavesdroppers,” Opt. Lett. 25(22), 1663–1665 (2000).
[Crossref]

1998 (2)

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[Crossref]

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

1994 (1)

1990 (1)

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Aida, T.

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Arai, K.

Argyris, A.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32(15), 2134–2136 (2007).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Bogris, A.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32(15), 2134–2136 (2007).
[Crossref]

Carroll, T. L.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Chen, G. R.

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

Chlouverakis, K. E.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32(15), 2134–2136 (2007).
[Crossref]

Chu, P. L.

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19(24), 2056–2058 (1994).
[Crossref]

Danckaert, J.

Davis, P.

S. Sunada, T. Harayama, K. Arai, K. Yoshimura, P. Davis, K. Tsuzuki, and A. Uchida, “Chaos laser chips with delayed optical feedback using a passive ring waveguide,” Opt. Express 19(7), 5713–5724 (2011).
[Crossref]

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Gastaud, N.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

Goedgebuer, J. P.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[Crossref]

Harayama, T.

Huang, D.

Jiang, N.

Jones, R. J.

Kouomou, Y. C.

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

Kusumoto, K.

Lai, R.

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[Crossref]

Li, G.

Li, W.

Lin, S.

Liu, D.

Liu, J. M.

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Liu, S.

Liu, Y.

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Luo, Y.

Lv, Y.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Nguimdo, R. M.

Ohtsubo, J.

Pecora, L. M.

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Porte, H.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[Crossref]

Qiu, K.

Rizomiliotis, P.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

P. Colet and R. Roy, “Digital communication with synchronized chaotic lasers,” Opt. Lett. 19(24), 2056–2058 (1994).
[Crossref]

Saito, S.

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Sciamanna, M.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Shore, K. A.

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36(1), 35–39 (2000).
[Crossref]

R. J. Jones, S. Sivaprakasam, and K. A. Shore, “Integrity of semiconductor laser chaotic communications to naïve eavesdroppers,” Opt. Lett. 25(22), 1663–1665 (2000).
[Crossref]

Sivaprakasam, S.

R. J. Jones, S. Sivaprakasam, and K. A. Shore, “Integrity of semiconductor laser chaotic communications to naïve eavesdroppers,” Opt. Lett. 25(22), 1663–1665 (2000).
[Crossref]

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36(1), 35–39 (2000).
[Crossref]

Sun, Q.

Sunada, S.

Syvridis, D.

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

A. Bogris, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Subcarrier modulation in all-optical chaotic communication systems,” Opt. Lett. 32(15), 2134–2136 (2007).
[Crossref]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Takiguchi, Y.

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

Tsuzuki, K.

Uchida, A.

Van der Sande, G.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

Verschaffelt, G.

Wang, A.

Wang, A.-B.

Wang, C.

Wang, J.-F.

Wang, Y.

Wang, Y.-C.

Wu, J. G.

Wu, Z. M.

Xia, G. Q.

Xia, L.

Xu, Z.

Xue, C.

Yoshimura, K.

Yu, C.

Zhang, F.

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

Zhang, J.-Z.

Zhao, A.

Zhao, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Liu, Y. Takiguchi, P. Davis, T. Aida, S. Saito, and J. M. Liu, “Experimental observation of complete chaos synchronization in semiconductor lasers,” Appl. Phys. Lett. 80(23), 4306–4308 (2002).
[Crossref]

IEEE J. Quantum Electron. (3)

S. Sivaprakasam and K. A. Shore, “Message encoding and decoding using chaotic external-cavity diode lasers,” IEEE J. Quantum Electron. 36(1), 35–39 (2000).
[Crossref]

A. Bogris, P. Rizomiliotis, K. E. Chlouverakis, A. Argyris, and D. Syvridis, “Feedback Phase in Optically Generated Chaos: A Secret Key for Cryptographic Applications,” IEEE J. Quantum Electron. 44(2), 119–124 (2008).
[Crossref]

Y. C. Kouomou, P. Colet, L. Larger, and N. Gastaud, “Mismatch-induced bit error rate in optical chaos communications using semiconductor lasers with electrooptical feedback,” IEEE J. Quantum Electron. 41(2), 156–163 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Zhang, P. L. Chu, R. Lai, and G. R. Chen, “Dual-wavelength chaos generation and synchronization in erbium-doped fiber lasers,” IEEE Photonics Technol. Lett. 17(3), 549–551 (2005).
[Crossref]

Nat. Photonics (1)

M. Sciamanna and K. A. Shore, “Physics and applications of laser diode chaos,” Nat. Photonics 9(3), 151–162 (2015).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

Y. C. Kouomou, P. Colet, N. Gastaud, and L. Larger, “Effect of parameter mismatch on the synchronization of chaotic semiconductor lasers with electro-optical feedback,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5), 056226 (2004).
[Crossref]

Phys. Rev. Lett. (2)

L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett. 64(8), 821–824 (1990).
[Crossref]

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based on synchronization of hyperchaos generated by a delayed feedback tunable laser diode,” Phys. Rev. Lett. 80(10), 2249–2252 (1998).
[Crossref]

Science (1)

G. D. VanWiggeren and R. Roy, “Communication with chaotic lasers,” Science 279(5354), 1198–1200 (1998).
[Crossref]

Other (1)

S. Stein and J. J. Jones, Modern communication principle with application to digital signaling. New York, NY, USA: McGraw-Hill, 1967.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The configuration of chaotic optical communication system with variable RF amplifier gain. The offset phase of the emitter ϕ and the offset phase of the receiver ϕ′ meets ϕ = ϕ′ ± π/2 when they match perfectly.
Fig. 2
Fig. 2 (a) The BER of Bob and Eve when the RF amplifier gain of the emitter changes from 17dB to 19dB. (b) The zoom of the BER of Eve when the RF amplifier gain of the emitter changes from 17.94dB to 18.02dB.
Fig. 3
Fig. 3 BERs in two periods. The three rows from the front to back are the instantaneous BER of Bob, the instantaneous BER of Eve and the BER of Eve. The change of the RF amplifier gain of the emitter with time is shown at the bottom.
Fig. 4
Fig. 4 (a) BER of Bob and Eve in 120s. (b) The zoom of BER of Eve and the instantaneous BER of Eve in 40s.
Fig. 5
Fig. 5 (a) BER of Bob under different A′ in 120s. (b) BER of Eve under different A′ in 120s. (c) BER of Eve versus the RF amplifier gain of the emitter under different A′.
Fig. 6
Fig. 6 (a) BER of Bob under different P′ in 120s. (b) BER of Eve under different P′ in 120s.
Fig. 7
Fig. 7 (a) BER of Bob under different Vπ in 120s. (b) BER of Eve under different Vπ in 120s.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

β(G)=πAγGP/(2 V π ), β ( G )=π A γ G P /(2 V π )
ε 2 (G, G )= 1 3 ( ΔT τ ) 2 + ( Δβ(G, G ) β(G) ) 2 +( 1 π 4 ) ( Δτ τ ) 2 2( 1 π 4 ) Δβ(G, G ) β(G) Δτ τ 2( 1 π 4 ) ΔT τ Δτ τ
n 2 (G, G ) 1 2 K 2 [ ε 2 (G, G )+ ( Δϕ ) 2 + 1 4 ( ΔK K ) 2 ]
K= 1 4 P g EDFA α T g APD eη hv , K = P g APD eη hv
BER(G, G )= 1 2 erfc( u(G, G ) 2 2 )= 1 2 erfc( Kα 2 2 n 2 (G, G ) )
BER= 0 T BER instantaneous (G, G ,t)dt /T
Δβ(G, G )= β ( G )β(G) = π A γ G P 2 V π πAγGP 2 V π
Δβ(G, G )= πγP 2 V π ( A G AG)

Metrics