Abstract

High performance InGaN-based laser diodes (LDs) monolithically grown on Si is fundamentally interesting and highly desirable for photonics integration on Si platform. Suppression of point defects is of crucial importance to improve the device performance of InGaN-based LDs grown on Si. This work presents a detailed study on the impact of point defects, such as carbon (C) impurities and gallium vacancies (VGa), on the device characteristics of InGaN-based LDs grown on Si. By suppressing the VGa-related defect within the waveguide layers, reducing the thermal degradation of InGaN-based quantum wells, and controlling the C impurity concentrations within the thick p-type cladding layers, the as-fabricated InGaN-based LDs grown on Si exhibited a significantly reduced threshold current density of 2.25 kA/cm2 and an operation voltage of 4.7 V.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer

Xixia Tao, Junlin Liu, Jianli Zhang, Chunlan Mo, Longquan Xu, Jie Ding, Guangxu Wang, Xiaolan Wang, Xiaoming Wu, Zhijue Quan, Shuan Pan, Fang Fang, and Fengyi Jiang
Opt. Mater. Express 8(5) 1221-1230 (2018)

Development of high performance green c-plane III-nitride light-emitting diodes

Abdullah. I. Alhassan, Nathan. G. Young, Robert. M. Farrell, Christopher. Pynn, Feng. Wu, Ahmed. Y. Alyamani, Shuji Nakamura, Steven. P. DenBaars, and James. S. Speck
Opt. Express 26(5) 5591-5601 (2018)

Room-temperature electrically pumped InGaN-based microdisk laser grown on Si

Meixin Feng, Junlei He, Qian Sun, Hongwei Gao, Zengcheng Li, Yu Zhou, Jianping Liu, Shuming Zhang, Deyao Li, Liqun Zhang, Xiaojuan Sun, Dabing Li, Huaibing Wang, Masao Ikeda, Rongxin Wang, and Hui Yang
Opt. Express 26(4) 5043-5051 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. (Beijing) 61(22), 1723–1725 (2016).
    [Crossref]
  2. X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
    [Crossref] [PubMed]
  3. F. Tabataba-Vakili, S. Rennesson, B. Damilano, E. Frayssinet, J. Y. Duboz, F. Semond, I. Roland, B. Paulillo, R. Colombelli, M. E. Kurdi, X. Checoury, S. Sauvage, L. Doyennette, C. Brimont, T. Guillet, B. Gayral, and P. Boucaud, “III-nitride on silicon electrically injected microrings for nanophotonic circuits,” Opt. Express 27(8), 11800–11808 (2019).
    [Crossref] [PubMed]
  4. J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
    [Crossref] [PubMed]
  5. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  6. B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
    [Crossref]
  7. M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
    [Crossref]
  8. Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
    [Crossref]
  9. Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
    [Crossref] [PubMed]
  10. M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
    [Crossref]
  11. M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
    [Crossref]
  12. J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
    [Crossref]
  13. K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
    [Crossref]
  14. C. S. Kim, Y. D. Jang, D. M. Shin, J. H. Kim, D. Lee, Y. H. Choi, M. S. Noh, and K. J. Yee, “Estimation of relative defect densities in InGaN laser diodes by induced absorption of photoexcited carriers,” Opt. Express 18(26), 27136–27141 (2010).
    [Crossref] [PubMed]
  15. E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
    [Crossref]
  16. S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
    [Crossref]
  17. S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
    [Crossref]
  18. A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
    [Crossref]
  19. J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
    [Crossref]
  20. Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
    [Crossref]
  21. J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
    [Crossref]
  22. C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
    [Crossref]
  23. S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
    [Crossref]
  24. H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
    [Crossref]
  25. R. Zhou, M. Ikeda, F. Zhang, J. Liu, S. Zhang, A. Tian, P. Wen, D. Li, L. Zhang, and H. Yang, “Steady-state recombination lifetimes in polar InGaN/GaN quantum wells by time-resolved photoluminescence,” Jpn. J. Appl. Phys. 58, SCCB07 (2019).
  26. H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
    [Crossref]
  27. C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
    [Crossref]
  28. K. Rajabi, J. Wang, J. Jin, Y. Xing, L. Wang, Y. Han, C. Sun, Z. Hao, Y. Luo, K. Qian, C.-J. Chen, and M.-C. Wu, “Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design,” Opt. Express 26(19), 24985–24991 (2018).
    [Crossref] [PubMed]
  29. V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
    [Crossref]
  30. J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
    [Crossref]
  31. S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
    [Crossref]
  32. B. Pajot, and B. Clerjaud, “Optical Absorption of Impurities and Defects in Semiconducting Crystals: Electronic Absorption of Deep Centers and Vibrational Spectra,” Springer Science & Business Media 169, 229 (2012).
  33. A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
    [Crossref]
  34. C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
    [Crossref]
  35. Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
    [Crossref]
  36. A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
    [Crossref]
  37. S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
    [Crossref]
  38. J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
    [Crossref]

2019 (1)

2018 (7)

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

K. Rajabi, J. Wang, J. Jin, Y. Xing, L. Wang, Y. Han, C. Sun, Z. Hao, Y. Luo, K. Qian, C.-J. Chen, and M.-C. Wu, “Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design,” Opt. Express 26(19), 24985–24991 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

2017 (3)

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

2016 (6)

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. (Beijing) 61(22), 1723–1725 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

2015 (2)

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

2014 (2)

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

2013 (2)

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

2012 (1)

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

2010 (4)

C. S. Kim, Y. D. Jang, D. M. Shin, J. H. Kim, D. Lee, Y. H. Choi, M. S. Noh, and K. J. Yee, “Estimation of relative defect densities in InGaN laser diodes by induced absorption of photoexcited carriers,” Opt. Express 18(26), 27136–27141 (2010).
[Crossref] [PubMed]

E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
[Crossref]

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

2005 (1)

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

2001 (1)

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

2000 (1)

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

1999 (2)

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

1997 (1)

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

1996 (2)

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Abbas, Q.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Alkauskas, A.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

Aoyagi, Y.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Armstrong, A. M.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Bedair, S. M.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Boucaud, P.

Bour, D. P.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Brimont, C.

Bryant, B. N.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Butté, R.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

Cai, Y.

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Carlin, J.-F.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Castiglia, A.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Checoury, X.

Chen, C.-J.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Chichibu, S. F.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Choi, Y. H.

Colombelli, R.

Cosendey, G.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Crawford, M. H.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Dai, S.

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Damilano, B.

DenBaars, S. P.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

Dorsaz, J.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Doyennette, L.

Dreyer, C. E.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

Du, G.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Duboz, J. Y.

Duelk, M.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Fan, X.

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

Feltin, E.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Feng, M.

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Frayssinet, E.

Gao, H.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Gao, X.

Gayral, B.

Grandjean, N.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Grünberg, P.

Guillet, T.

Haller, C.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

Han, J.

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Han, Y.

Hao, Z.

Haskell, B. A.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

He, J.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Hoshi, K.-i.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Huang, H.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Huang, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Ikeda, M.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

Ikedo, N.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Jacopin, G.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

Jang, Y. D.

Jiang, D.

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Jiang, Y.

Jin, J.

Johnson, N. M.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Joshkin, V. A.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Jr, .

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Kim, C. S.

Kim, H.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

Kim, J. H.

Kioupakis, E.

E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
[Crossref]

Kiyoku, H.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Kneissl, M.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Kolbas, R. M.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Koleske, D. D.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Kumano, H.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Kurdi, M. E.

Lee, D.

Lee, S. R.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

Leung, B.

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Li, D.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. (Beijing) 61(22), 1723–1725 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Li, S.

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Li, Z.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Liang, H.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liu, J.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Liu, L.

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Liu, S.

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Liu, W.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

Liu, Y.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

Luo, Y.

K. Rajabi, J. Wang, J. Jin, Y. Xing, L. Wang, Y. Han, C. Sun, Z. Hao, Y. Luo, K. Qian, C.-J. Chen, and M.-C. Wu, “Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design,” Opt. Express 26(19), 24985–24991 (2018).
[Crossref] [PubMed]

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Lyons, J. L.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

Martin, D.

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

Matsushita, T.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Meneghesso, G.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Meneghini, M.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Molnar, R. J.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Muth, J. F.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Nagahama, S. i.

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Nagahama, S.-i.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

Nakamura, S.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Neugebauer, J.

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[Crossref]

Noh, M. S.

Northrup, J. E.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Ohno, H.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Onuma, T.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

Orita, K.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Parker, C. A.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Paulillo, B.

Piner, E. L.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Qian, K.

Qin, C.

Rajabi, K.

Ramvall, P.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Rennesson, S.

Riblet, P.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Rinke, P.

E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
[Crossref]

Roland, I.

Romano, L.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Rossetti, M.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Ryu, H.-Y.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

Sauvage, S.

Schmidt, T.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Semond, F.

Senoh, M.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Setoguchi, A.

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Shen, R.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Shen, X.-Q.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Shi, Z.

Shim, J.-I.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

Shin, D. M.

Shin, D.-S.

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

Shmagin, I. K.

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sizov, D. S.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sota, T.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

Speck, J. S.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

Suemune, I.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Sugimoto, Y.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Sumiya, M.

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Sun, C.

Sun, Q.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

Sun, X.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Sun, Y.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

Tabataba-Vakili, F.

Takigawa, S.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Tanaka, S.

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

Tanaka, T.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Teepe, M.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Tian, A.

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Treat, D. W.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Trivellin, N.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Tsao, J. Y.

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Uedono, A.

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Van de Walle, C. G.

E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
[Crossref]

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[Crossref]

Velez, C.

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

Walle, C. G. V.

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Wang, H.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Wang, J.

K. Rajabi, J. Wang, J. Jin, Y. Xing, L. Wang, Y. Han, C. Sun, Z. Hao, Y. Luo, K. Qian, C.-J. Chen, and M.-C. Wu, “Improving modulation bandwidth of c-plane GaN-based light-emitting diodes by an ultra-thin quantum wells design,” Opt. Express 26(19), 24985–24991 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Wang, L.

Wang, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

Wen, P.

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

Wierer, J. J.

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Wong, W. S.

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Wu, M.-C.

Xia, X.

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Xing, Y.

Yamada, T.

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

Yang, H.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Yee, K. J.

Yoshimura, K.

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Yu, G.

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Yuan, J.

Yuri, M.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Zanoni, E.

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

Zhan, X.

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Zhang, B.

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Zhang, F.

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Zhang, L.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Zhang, S.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Zhang, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Zhao, D.

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Zhao, H.

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

Zheng, X.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Zhong, Y.

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Zhou, K.

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

Zhou, R.

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

Zhou, Y.

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

ACS Photonics (1)

M. Feng, Z. Li, J. Wang, R. Zhou, Q. Sun, X. Sun, D. Li, H. Gao, Y. Zhou, S. Zhang, D. Li, L. Zhang, J. Liu, H. Wang, M. Ikeda, X. Zheng, and H. Yang, “Room-Temperature Electrically Injected AlGaN-Based near-Ultraviolet Laser Grown on Si,” ACS Photonics 5(3), 699–704 (2018).
[Crossref]

AIP Adv. (1)

S. Li, Y. Zhou, H. Gao, S. Dai, G. Yu, Q. Sun, Y. Cai, B. Zhang, S. Liu, and H. Yang, “Off-state electrical breakdown of AlGaN/GaN/Ga(Al)N HEMT heterostructure grown on Si(111),” AIP Adv. 6(3), 035308 (2016).
[Crossref]

Appl. Phys. Express (4)

J. Dorsaz, A. Castiglia, G. Cosendey, E. Feltin, M. Rossetti, M. Duelk, C. Velez, J.-F. Carlin, and N. Grandjean, “AlGaN-Free Blue III–Nitride Laser Diodes Grown on c-Plane GaN Substrates,” Appl. Phys. Express 3(9), 092102 (2010).
[Crossref]

E. Kioupakis, P. Rinke, and C. G. Van de Walle, “Determination of Internal Loss in Nitride Lasers from First Principles,” Appl. Phys. Express 3(8), 082101 (2010).
[Crossref]

J. Liu, Z. Li, L. Zhang, F. Zhang, A. Tian, K. Zhou, D. Li, S. Zhang, and H. Yang, “Realization of InGaN laser diodes above 500 nm by growth optimization of the InGaN/GaN active region,” Appl. Phys. Express 7(11), 111001 (2014).
[Crossref]

A. Tian, J. Liu, M. Ikeda, S. Zhang, Z. Li, M. Feng, K. Zhou, D. Li, L. Zhang, P. Wen, F. Zhang, and H. Yang, “Conductivity enhancement in AlGaN:Mg by suppressing the incorporation of carbon impurity,” Appl. Phys. Express 8(5), 051001 (2015).
[Crossref]

Appl. Phys. Lett. (10)

C. Haller, J.-F. Carlin, G. Jacopin, D. Martin, R. Butté, and N. Grandjean, “Burying non-radiative defects in InGaN underlayer to increase InGaN/GaN quantum well efficiency,” Appl. Phys. Lett. 111(26), 262101 (2017).
[Crossref]

J. Neugebauer and C. G. Van de Walle, “Gallium vacancies and the yellow luminescence in GaN,” Appl. Phys. Lett. 69(4), 503–505 (1996).
[Crossref]

S. F. Chichibu, A. Setoguchi, A. Uedono, K. Yoshimura, and M. Sumiya, “Impact of growth polar direction on the optical properties of GaN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett. 78(1), 28–30 (2001).
[Crossref]

Z. Li, J. Liu, M. Feng, K. Zhou, S. Zhang, H. Wang, D. Li, L. Zhang, D. Zhao, D. Jiang, H. Wang, and H. Yang, “Suppression of thermal degradation of InGaN/GaN quantum wells in green laser diode structures during the epitaxial growth,” Appl. Phys. Lett. 103(15), 152109 (2013).
[Crossref]

H. Kumano, K.-i. Hoshi, S. Tanaka, I. Suemune, X.-Q. Shen, P. Riblet, P. Ramvall, and Y. Aoyagi, “Effect of indium doping on the transient optical properties of GaN films,” Appl. Phys. Lett. 75(19), 2879–2881 (1999).
[Crossref]

C. Haller, J.-F. Carlin, G. Jacopin, W. Liu, D. Martin, R. Butté, and N. Grandjean, “GaN surface as the source of non-radiative defects in InGaN/GaN quantum wells,” Appl. Phys. Lett. 113(11), 111106 (2018).
[Crossref]

C. E. Dreyer, A. Alkauskas, J. L. Lyons, J. S. Speck, and C. G. V. Walle, “Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters,” Appl. Phys. Lett. 108(14), 141101 (2016).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, T. Sota, B. A. Haskell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “Limiting factors of room-temperature nonradiative photoluminescence lifetime in polar and nonpolar GaN studied by time-resolved photoluminescence and slow positron annihilation techniques,” Appl. Phys. Lett. 86(2), 021914 (2005).
[Crossref]

S. Nakamura, M. Senoh, S. i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69(26), 4056–4058 (1996).
[Crossref]

M. Kneissl, D. P. Bour, L. Romano, C. G. V. Walle, J. E. Northrup, W. S. Wong, D. W. Treat, M. Teepe, T. Schmidt, and N. M. Johnson, “Performance and degradation of continuous-wave InGaN multiple-quantum-well laser diodes on epitaxially laterally overgrown GaN substrates,” Appl. Phys. Lett. 77(13), 1931–1933 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of Diffusion-Related Gradual Degradation of InGaN-Based Laser Diodes,” IEEE J. Quantum Electron. 48(9), 1169–1176 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Feng, J. Wang, R. Zhou, Q. Sun, H. Gao, Y. Zhou, J. Liu, Y. Huang, S. Zhang, M. Ikeda, H. Wang, Y. Zhang, Y. Wang, and H. Yang, “On-Chip Integration of GaN-Based Laser, Modulator, and Photodetector Grown on Si,” IEEE J. Sel. Top. Quantum Electron. 24(6), 1–5 (2018).
[Crossref]

J. Appl. Phys. (2)

V. A. Joshkin, C. A. Parker, S. M. Bedair, J. F. Muth, I. K. Shmagin, R. M. Kolbas, E. L. Piner, and R. J. Molnar, “Effect of growth temperature on point defect density of unintentionally doped GaN grown by metalorganic chemical vapor deposition and hydride vapor phase epitaxy,” J. Appl. Phys. 86(1), 281–288 (1999).
[Crossref]

A. M. Armstrong, B. N. Bryant, M. H. Crawford, D. D. Koleske, S. R. Lee, J. J. Wierer, and . Jr, “Defect-reduction mechanism for improving radiative efficiency in InGaN/GaN light-emitting diodes using InGaN underlayers,” J. Appl. Phys. 117(13), 134501 (2015).
[Crossref]

J. Nanophotonics (1)

Z. Li, L. Liu, Y. Huang, M. Feng, J. Liu, Q. Sun, X. Sun, X. Zhan, H. Gao, Y. Zhou, H. Wang, H. Zhao, and H. Yang, “Suppression of unintentional carbon incorporation in AlGaN-based near-ultraviolet light-emitting diode grown on Si,” J. Nanophotonics 12(04), 043507 (2018).
[Crossref]

J. Phys. Chem. C (1)

J. Liu, H. Liang, X. Zheng, Y. Liu, X. Xia, Q. Abbas, H. Huang, R. Shen, Y. Luo, and G. Du, “Degradation Mechanism of Crystalline Quality and Luminescence in In0.42Ga0.58N/GaN Double Heterostructures with Porous InGaN Layer,” J. Phys. Chem. C 121(33), 18095–18101 (2017).
[Crossref]

Jpn. J. Appl. Phys. (2)

H. Kim, D.-S. Shin, H.-Y. Ryu, and J.-I. Shim, “Analysis of time-resolved photoluminescence of InGaN quantum wells using the carrier rate equation,” Jpn. J. Appl. Phys. 49(11), 112402 (2010).
[Crossref]

S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys. 36(Part 2, No. 8B), L1059–L1061 (1997).
[Crossref]

Laser Photonics Rev. (1)

J. J. Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7(6), 963–993 (2013).
[Crossref]

Light Sci. Appl. (1)

Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun, D. Li, S. Zhang, M. Ikeda, and H. Yang, “Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si,” Light Sci. Appl. 7(1), 13 (2018).
[Crossref] [PubMed]

Nat. Photonics (2)

Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, and H. Yang, “Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si,” Nat. Photonics 10(9), 595–599 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Status Solidi., C Curr. Top. Solid State Phys. (2)

B. Leung, J. Han, and Q. Sun, “Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si (111),” Phys. Status Solidi., C Curr. Top. Solid State Phys. 11(3-4), 437–441 (2014).
[Crossref]

A. Tian, J. Liu, L. Zhang, M. Ikeda, S. Zhang, D. Li, X. Fan, K. Zhou, P. Wen, F. Zhang, and H. Yang, “Green laser diodes with low operation voltage obtained by suppressing carbon impurity in AlGaN: Mg cladding layer,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 13(5-6), 245–247 (2016).
[Crossref]

Sci. Bull. (Beijing) (1)

D. Li, “GaN-on-Si laser diode: open up a new era of Si-based optical interconnections,” Sci. Bull. (Beijing) 61(22), 1723–1725 (2016).
[Crossref]

Sci. Rep. (1)

J. He, M. Feng, Y. Zhong, J. Wang, R. Zhou, H. Gao, Y. Zhou, Q. Sun, J. Liu, Y. Huang, S. Zhang, H. Wang, M. Ikeda, and H. Yang, “On-wafer fabrication of cavity mirrors for InGaN-based laser diode grown on Si,” Sci. Rep. 8(1), 7922 (2018).
[Crossref] [PubMed]

Other (2)

R. Zhou, M. Ikeda, F. Zhang, J. Liu, S. Zhang, A. Tian, P. Wen, D. Li, L. Zhang, and H. Yang, “Steady-state recombination lifetimes in polar InGaN/GaN quantum wells by time-resolved photoluminescence,” Jpn. J. Appl. Phys. 58, SCCB07 (2019).

B. Pajot, and B. Clerjaud, “Optical Absorption of Impurities and Defects in Semiconducting Crystals: Electronic Absorption of Deep Centers and Vibrational Spectra,” Springer Science & Business Media 169, 229 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the InGaN-based LDs grown on Si. (b) The cross-sectional HAADF STEM image of the InGaN MQW active region.
Fig. 2
Fig. 2 Micro-PL images of the InGaN-based LDs grown on Si. (a) sample A and (b) sample B. (c) Room-temperature TRPL at the PL peak emission wavelength for the two samples.
Fig. 3
Fig. 3 SIMS depth profile of C impurity concentration of the p-AlGaN cladding layer for samples A and B.
Fig. 4
Fig. 4 (a) EL spectra of sample B above (1.2 times) and below (0.8 times) the threshold current. The insets are the corresponding FFPs. (b) On-bar L-I-V characteristics under pulsed injection for samples A and B.
Fig. 5
Fig. 5 (a) Optical microscopy image of several InGaN-based LDs on bar after facet cleavage. (b) Statistical histogram of the threshold current for the as-fabricated InGaN-based LDs of sample B. The bell-shaped curve shows the normal distribution of the threshold current.

Tables (2)

Tables Icon

Table 1 Comparison of the growth conditions between samples A and B

Tables Icon

Table 2 The statistic results of threshold current (Ith) and threshold current density (Jth) for the as-fabricated LDs from samples A and B.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 τ initial =2( 1 τ nr + 1 τ r )=2( A+BΔN ),
1 τ final = 2 τ nr =2A,

Metrics