Abstract

Nanoporous gold can be exploited as plasmonic material for enhanced spectroscopy both in the visible and in the near-infrared spectral regions. In particular, the peculiar morphology of such a substrate leads to a higher field confinement with respect to conventional plasmonic materials. This property can be exploited to achieve extremely high sensitivity to the changes in environmental conditions, making it an interesting tool for the development of sensors and biosensors. Here, we compared the sensitivity of a plasmonic resonator made of nanoporous gold with a similar structure made of homogeneous gold. To assess the enhanced sensitivity the same stoichiometric quantity of dielectric material was deposited via Atomic Layer Deposition onto the two considered structures. Experimental results proved the higher sensitivity was achievable using nanoporous gold. In particular, such 3D nanoporous structures can be proposed as a promising sensing platform in the near-infrared with a sensitivity over 4.000 nm/RIU.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoporous gold plasmonic structures for sensing applications

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin
Opt. Express 19(14) 13164-13170 (2011)

Titanium dioxide nanoparticle modified plasmonic interface for enhanced refractometric and biomolecular sensing

Hui Zhang, Yaofei Chen, Hao Wang, Shiqi Hu, Kai Xia, Xin Xiong, Wenjuan Huang, Huihui Lu, Jianhui Yu, Heyuan Guan, Miao He, Weiping Liu, Jun Zhang, Yunhan Luo, Zhiping Xie, and Zhe Chen
Opt. Express 26(25) 33226-33237 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  2. R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
    [Crossref] [PubMed]
  3. D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
    [Crossref] [PubMed]
  4. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  5. G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [Crossref]
  6. M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
    [Crossref] [PubMed]
  7. G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
    [Crossref]
  8. J. R. Mejía-Salazar and O. N. Oliveira, “Plasmonic Biosensing,” Chem. Rev. 118(20), 10617–10625 (2018).
    [Crossref] [PubMed]
  9. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer Berlin Heidelberg, 1988), 111.
  10. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
    [Crossref]
  11. A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).
  12. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
    [Crossref] [PubMed]
  13. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
    [Crossref] [PubMed]
  14. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  15. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref] [PubMed]
  16. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
    [Crossref] [PubMed]
  17. Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
    [Crossref] [PubMed]
  18. S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
    [Crossref] [PubMed]
  19. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
    [Crossref] [PubMed]
  20. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
    [Crossref] [PubMed]
  21. A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
    [Crossref]
  22. D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
    [Crossref]
  23. D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
    [Crossref] [PubMed]
  24. D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horizons (2019). DOI: 10.1039/C9NH00168A
  25. P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry Vol. 171. John Wiley & Sons, 2007.
  26. B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
    [Crossref] [PubMed]
  27. A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
    [Crossref]
  28. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  29. H. H. Huang and Y.-C. Hung, “Numerical analysis and the effective parameter retrieval of helical metamaterials,” Phot. Phon. Prop. Eng. Nano. III 8632, 863222 (2013).
    [Crossref]
  30. M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
    [Crossref] [PubMed]
  31. J. Kaschke and M. Wegener, “Optical and Infrared Helical Metamaterials,” Nanophot. 5(4), 510–523 (2016).
    [Crossref]
  32. C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
    [Crossref] [PubMed]
  33. M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
    [Crossref] [PubMed]
  34. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  35. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  36. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
    [Crossref] [PubMed]
  37. F.-G. Hu, J. Song, and T. Kamgaing, “Modeling of multilayered media using effective medium theory,” in 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010), pp. 225–228.
    [Crossref]
  38. S. Barizuddin and S. G. S. Bok, “Plasmonic Sensors for Disease Detection - A Review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).
  39. G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
    [Crossref] [PubMed]

2019 (2)

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
[Crossref]

2018 (3)

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

J. R. Mejía-Salazar and O. N. Oliveira, “Plasmonic Biosensing,” Chem. Rev. 118(20), 10617–10625 (2018).
[Crossref] [PubMed]

2017 (2)

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

2016 (4)

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

J. Kaschke and M. Wegener, “Optical and Infrared Helical Metamaterials,” Nanophot. 5(4), 510–523 (2016).
[Crossref]

S. Barizuddin and S. G. S. Bok, “Plasmonic Sensors for Disease Detection - A Review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

2014 (1)

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

H. H. Huang and Y.-C. Hung, “Numerical analysis and the effective parameter retrieval of helical metamaterials,” Phot. Phon. Prop. Eng. Nano. III 8632, 863222 (2013).
[Crossref]

2012 (2)

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
[Crossref] [PubMed]

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

2011 (6)

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

2010 (1)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

2009 (2)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (2)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2005 (2)

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

2001 (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

1999 (2)

G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Ait-Bouziad, N.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Altug, H.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Bao, K.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Barison, S.

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Barizuddin, S.

S. Barizuddin and S. G. S. Bok, “Plasmonic Sensors for Disease Detection - A Review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

Baumann, T. F.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Bäumer, M.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Bechelany, M.

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
[Crossref] [PubMed]

Bellini, T.

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Biener, J.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Biener, M. M.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Bok, S. G. S.

S. Barizuddin and S. G. S. Bok, “Plasmonic Sensors for Disease Detection - A Review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

Bozzola, A.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Brolo, A. G.

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Büchi, L.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Burda, C.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

Buscaglia, M.

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Calandrini, E.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Cattarin, S.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
[Crossref] [PubMed]

Cetin, A. E.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Chen, X.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Coskun, A. F.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Cuscunà, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

David, C.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

De Angelis, F.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

De Luca, A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Ekinci, Y.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

El-Sayed, M. A.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Estevez, M.-C.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Feurer, T.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Galarreta, B. C.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Garoli, D.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express 19(14), 13164–13170 (2011).
[Crossref] [PubMed]

Gauglitz, G.

G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Giannini, R.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Giavazzi, F.

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Giessen, H.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Gorelick, S.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Halas, N. J.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hamza, A. V.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Haynes, C. L.

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Hentschel, M.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Herman, D.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Homola, G.

G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Homola, J.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Hu, F.-G.

F.-G. Hu, J. Song, and T. Kamgaing, “Modeling of multilayered media using effective medium theory,” in 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010), pp. 225–228.
[Crossref]

Hua Zhang, D.

A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
[Crossref]

Huang, H. H.

H. H. Huang and Y.-C. Hung, “Numerical analysis and the effective parameter retrieval of helical metamaterials,” Phot. Phon. Prop. Eng. Nano. III 8632, 863222 (2013).
[Crossref]

Huang, M.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Hung, Y.-C.

H. H. Huang and Y.-C. Hung, “Numerical analysis and the effective parameter retrieval of helical metamaterials,” Phot. Phon. Prop. Eng. Nano. III 8632, 863222 (2013).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Jiang, R.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Jin, C.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

John-Herpin, A.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kamgaing, T.

F.-G. Hu, J. Song, and T. Kamgaing, “Modeling of multilayered media using effective medium theory,” in 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010), pp. 225–228.
[Crossref]

Kaschke, J.

J. Kaschke and M. Wegener, “Optical and Infrared Helical Metamaterials,” Nanophot. 5(4), 510–523 (2016).
[Crossref]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Kelly, C.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lanfranco, R.

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Lashuel, H. A.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Lechuga, L. M.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Limaj, O.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, M.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Liu, T.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Löffler, J. F.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Marichy, C.

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mejía-Salazar, J. R.

J. R. Mejía-Salazar and O. N. Oliveira, “Plasmonic Biosensing,” Chem. Rev. 118(20), 10617–10625 (2018).
[Crossref] [PubMed]

Merbold, H.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Mueller, A. D.

A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
[Crossref]

Narayanan, R.

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

Neubrech, F.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Nicotra, G.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Nordlander, P.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Oh, S.-H.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Oliveira, O. N.

J. R. Mejía-Salazar and O. N. Oliveira, “Plasmonic Biosensing,” Chem. Rev. 118(20), 10617–10625 (2018).
[Crossref] [PubMed]

Ortolani, M.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Otte, M. A.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Ozcan, A.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Pacholski, C.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Päivänranta, B.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Pinna, N.

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
[Crossref] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Rodrigo, D.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Romanato, F.

Ruffato, G.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Schatz, G. C.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Scuderi, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Semenyshyn, R.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Sepulveda, B.

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Shen, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

Song, J.

F.-G. Hu, J. Song, and T. Kamgaing, “Modeling of multilayered media using effective medium theory,” in 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010), pp. 225–228.
[Crossref]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Stanglmair, C.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

Tao, Y.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Tarin, C.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Tasco, V.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Teutsch, T.

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Tittl, A.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Tobing, L. Y. M.

A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

Toma, A.

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wang, X.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Wegener, M.

J. Kaschke and M. Wegener, “Optical and Infrared Helical Metamaterials,” Nanophot. 5(4), 510–523 (2016).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wichmann, A.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wittenberg, N. J.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Wittstock, A.

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Xiao, G.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Xu, H.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Yee, S. S.

G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

Yoo, D.

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Zanchetta, G.

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhou, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhou, Z. K.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zhu, J.

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

ACS Nano (1)

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano 5(8), 6374–6382 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

D. Garoli, E. Calandrini, A. Bozzola, A. Toma, S. Cattarin, M. Ortolani, and F. De Angelis, “Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared,” ACS Photonics 5(8), 3408–3414 (2018).
[Crossref]

Adv. Mater. (1)

C. Marichy, M. Bechelany, and N. Pinna, “Atomic layer deposition of nanostructured materials for energy and environmental applications,” Adv. Mater. 24(8), 1017–1032 (2012).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

A. D. Mueller, L. Y. M. Tobing, and D. Hua Zhang, “Reliable Fabrication of High Aspect Ratio Plasmonic Nanostructures Based on Seedless Pulsed Electrodeposition,” Adv. Mater. Technol. 4(1), 1800364 (2019).
[Crossref]

Anal. Chim. Acta (2)

M.-C. Estevez, M. A. Otte, B. Sepulveda, and L. M. Lechuga, “Trends and challenges of refractometric nanoplasmonic biosensors: a review,” Anal. Chim. Acta 806, 55–73 (2014).
[Crossref] [PubMed]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: nanostructures, bioassays and biosensing--a review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Chem. Rev. (4)

C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105(4), 1025–1102 (2005).
[Crossref] [PubMed]

J. R. Mejía-Salazar and O. N. Oliveira, “Plasmonic Biosensing,” Chem. Rev. 118(20), 10617–10625 (2018).
[Crossref] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

J. Nanomed. Nanotechnol. (1)

S. Barizuddin and S. G. S. Bok, “Plasmonic Sensors for Disease Detection - A Review,” J. Nanomed. Nanotechnol. 7(3), 1000373 (2016).

J. Phys. Chem. B (1)

C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Nano Lett. (6)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10(8), 3184–3189 (2010).
[Crossref] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett. 5(6), 1065–1070 (2005).
[Crossref] [PubMed]

R. Semenyshyn, M. Hentschel, C. Stanglmair, T. Teutsch, C. Tarin, C. Pacholski, H. Giessen, and F. Neubrech, “In Vitro Monitoring Conformational Changes of Polypeptide Monolayers Using Infrared Plasmonic Nanoantennas,” Nano Lett. 19(1), 1–7 (2019).
[Crossref] [PubMed]

M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, and A. V. Hamza, “ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity,” Nano Lett. 11(8), 3085–3090 (2011).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti, M. Scuderi, G. Nicotra, and A. Passaseo, “Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform,” Nano Lett. 16(9), 5823–5828 (2016).
[Crossref] [PubMed]

S. Zhang, K. Bao, N. J. Halas, H. Xu, and P. Nordlander, “Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed,” Nano Lett. 11(4), 1657–1663 (2011).
[Crossref] [PubMed]

Nanophot. (1)

J. Kaschke and M. Wegener, “Optical and Infrared Helical Metamaterials,” Nanophot. 5(4), 510–523 (2016).
[Crossref]

Nanophotonics (1)

G. Zanchetta, R. Lanfranco, F. Giavazzi, T. Bellini, and M. Buscaglia, “Emerging applications of label-free optical biosensors,” Nanophotonics 6(4), 627–645 (2017).
[Crossref]

Nanoscale (1)

D. Garoli, E. Calandrini, A. Bozzola, M. Ortolani, S. Cattarin, S. Barison, A. Toma, and F. De Angelis, “Boosting infrared energy transfer in 3D nanoporous gold antennas,” Nanoscale 9(2), 915–922 (2017).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Rodrigo, A. Tittl, N. Ait-Bouziad, A. John-Herpin, O. Limaj, C. Kelly, D. Yoo, N. J. Wittenberg, S.-H. Oh, H. A. Lashuel, and H. Altug, “Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces,” Nat. Commun. 9(1), 2160 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4(1), 2381 (2013).
[Crossref] [PubMed]

Nat. Mater. (3)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. De Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15(6), 621–627 (2016).
[Crossref] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8(11), 867–871 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

A. G. Brolo, “Plasmonics for future biosensors,” Nat. Photonics 6(11), 709–713 (2012).
[Crossref]

Opt. Express (1)

Phot. Phon. Prop. Eng. Nano. III (1)

H. H. Huang and Y.-C. Hung, “Numerical analysis and the effective parameter retrieval of helical metamaterials,” Phot. Phon. Prop. Eng. Nano. III 8632, 863222 (2013).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(1 Pt 2), 016608 (2004).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999).
[Crossref]

G. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[Crossref]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer Berlin Heidelberg, 1988), 111.

A. E. Cetin, A. F. Coskun, B. C. Galarreta, M. Huang, D. Herman, A. Ozcan, and H. Altug, “Handheld high-throughput plasmonic biosensor using computational on-chip imaging,” Light Sci. Appl. 3, (2014).

D. Garoli, E. Calandrini, G. Giovannini, A. Hubarevich, V. Caligiuri, and F. De Angelis, “Nanoporous gold metamaterials for high sensitivity plasmonic sensing,” Nanoscale Horizons (2019). DOI: 10.1039/C9NH00168A

P. R. Griffiths and J. A. De Haseth, Fourier transform infrared spectrometry Vol. 171. John Wiley & Sons, 2007.

F.-G. Hu, J. Song, and T. Kamgaing, “Modeling of multilayered media using effective medium theory,” in 19th Topical Meeting on Electrical Performance of Electronic Packaging and Systems (IEEE, 2010), pp. 225–228.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 SEM micrographs of NPG vertical antennas (top and tilted views). Inset: tilted view of the same structure prepared in homogeneous gold.
Fig. 2
Fig. 2 (a)Reflectance curves of 3D antenna arrays for NPG and homogeneous gold. (b) Resonance wavelength and (c) spectral shift as a function of the thickness of the SiO2 layer.
Fig. 3
Fig. 3 (a) Sensitivity, expressed as nm/RIU, and (b) figures of merit of the NPG and homogenous Au arrays.
Fig. 4
Fig. 4 Sensing performance of a bioanalyte. (a) Measured reflectance curves; (b) Spectral shifts.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δn= ε NPG ε // avg = ε NPG ε NPG t NPG + ε SiO2 t SiO2 t NPG + t SiO2
S(t)=Δλ(t)/Δn(t)
FoM=S/Δλ

Metrics