Abstract

A tunable all-optical coupled microwave oscillator is proposed and experimentally demonstrated. This system has no any electrical microwave devices as well as photoelectric conversion and electro-optic modulation. In this scheme, a fiber ring laser not only provides a set of frequency references but also acts as an active optical resonator. The oscillation frequency selection is carried out by cavity modes transfer and injection locking process. Due to the mode pulling effect, a self-adapting oscillation frequency locking is achieved. Through the microwave envelope detection and feedback modulation in a semiconductor optical amplifier (SOA), a microwave signal can be generated by a pure optical oscillation. In the experiment, good quality and high stability single-mode microwave signals are obtained, whose frequencies can be tuned from 6.93 GHz to 25.54 GHz by simply adjusting the wavelength of the master laser. Under different operation frequencies, the measured single-sideband phase noises are approximately −95 dBc/Hz at a 10-kHz offset from the carriers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Supermode noise suppression with mutual injection locking for coupled optoelectronic oscillator

Jian Dai, Anni Liu, Jingliang Liu, Tian Zhang, Yue Zhou, Feifei Yin, Yitang Dai, Yuanan Liu, and Kun Xu
Opt. Express 25(22) 27060-27066 (2017)

Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

Dual microwave and optical oscillator

X. Steve Yao and Lute Maleki
Opt. Lett. 22(24) 1867-1869 (1997)

References

  • View by:
  • |
  • |
  • |

  1. F. Herzog, K. Kudielka, and D. Erni, “Optical phase locked loop for transparent inter-satellite communications,” Opt. Express 13(10), 3816–3821 (2005).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. P. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref]
  5. C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
    [Crossref]
  6. A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
    [Crossref]
  7. H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
    [Crossref]
  8. B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
    [Crossref]
  9. Y. Chen, “Photonic generation and transmission of triangular and square waveforms with a large repetition rate tunable range,” J. Lightwave Technol. 36(16), 3293–3301 (2018).
    [Crossref]
  10. C. Xue, S. Ji, A. Wang, N. Jiang, K. Qiu, and Y. Hong, “Narrow-linewidth single-frequency photonic microwave generation in optically injected semiconductor lasers with filtered optical feedback,” Opt. Lett. 43(17), 4184–4187 (2018).
    [Crossref]
  11. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  12. L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  13. J. Y. Han, Y. T. Huang, Y. Z. Hao, M. Tang, F. L. Wang, J. L. Xiao, Y. D. Yang, and Y. Z. Huang, “Wideband frequency-tunable optoelectronic oscillator with a directly modulated AlGaInAs/InP integrated twin-square microlaser,” Opt. Express 26(24), 31784–31793 (2018).
    [Crossref]
  14. S. L. Pan and J. P. Yao, “Optical clock recovery using a polarization modulator-based frequency-doubling optoelectronic oscillator,” J. Lightwave Technol. 27(16), 3531–3539 (2009).
    [Crossref]
  15. X. Zhang, J. L. Zheng, T. Pu, Y. S. Zhang, Y. C. Shi, J. Li, Y. D. Li, H. T. Zhu, and X. F. Chen, “Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser,” Opt. Express 27(5), 7036–7046 (2019).
    [Crossref]
  16. X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18(1), 73–78 (2000).
    [Crossref]
  17. D. Zhu, T. H. Du, and S. L. Pan, “A Coupled Optoelectronic Oscillator With Performance Improved by Enhanced Spatial Hole Burning in an Erbium-Doped Fiber,” J. Lightwave Technol. 36(17), 3726–3732 (2018).
    [Crossref]
  18. E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
    [Crossref]
  19. J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed fabry-perot filter-based multi-wavelength tunable laser,” J. Lightwave Technol. 29(22), 3381–3386 (2011).
    [Crossref]
  20. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
    [Crossref]
  21. X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22(17), 1329–1331 (1997).
    [Crossref]
  22. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref]
  23. H. Tang, Y. Yu, Z. Wang, L. Xu, and X. Zhang, “Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband,” Opt. Lett. 43(10), 2328–2331 (2018).
    [Crossref]
  24. S. L. Pan and J. P. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref]
  25. Y. Jiang, Y. J. Zi, G. F. Bai, and J. Tian, “All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering,” Opt. Lett. 43(8), 1774–1777 (2018).
    [Crossref]
  26. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  27. Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
    [Crossref]
  28. Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
    [Crossref]
  29. R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
    [Crossref]
  30. X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
    [Crossref]
  31. C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
    [Crossref]
  32. N. H. Zhu, H. G. Zhang, J. W. Man, H. L. Zhu, J. H. Ke, Y. Liu, X. Wang, H. Q. Yuan, L. Xie, and W. Wang, “Microwave generation in an electro-absorption modulator integrated with a DFB laser subject to optical injection,” Opt. Express 17(24), 22114–22123 (2009).
    [Crossref]
  33. T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
    [Crossref]

2019 (3)

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

X. Zhang, J. L. Zheng, T. Pu, Y. S. Zhang, Y. C. Shi, J. Li, Y. D. Li, H. T. Zhu, and X. F. Chen, “Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser,” Opt. Express 27(5), 7036–7046 (2019).
[Crossref]

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

2018 (6)

2017 (1)

2016 (1)

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

2015 (2)

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

2014 (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

2013 (1)

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

2012 (1)

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (3)

2007 (3)

E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

2005 (1)

2000 (2)

1998 (2)

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

1997 (1)

1996 (1)

Aditya, S.

Aggoune, H. M.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Bai, G. F.

Y. Jiang, Y. J. Zi, G. F. Bai, and J. Tian, “All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering,” Opt. Lett. 43(8), 1774–1777 (2018).
[Crossref]

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Boonstra, A. J.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Chan, S. C.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Chen, F.

Chen, X. F.

X. Zhang, J. L. Zheng, T. Pu, Y. S. Zhang, Y. C. Shi, J. Li, Y. D. Li, H. T. Zhu, and X. F. Chen, “Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser,” Opt. Express 27(5), 7036–7046 (2019).
[Crossref]

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Chen, Y.

Chen, Z.

Chu, C. H.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Davis, L.

Dong, R. Y.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Du, H.

Du, T. H.

Erni, D.

Fletcher, S.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Fu, S.

Gao, X.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Guo, R.

Haas, H.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Haider, F.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Han, J. Y.

Hao, Y. Z.

He, Y. T.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

Hepsaydir, E.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Herzog, F.

Hong, Y.

Hu, L.

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Hu, W.

Huang, Y. T.

Huang, Y. Z.

Hwang, S. K.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Ji, S.

Jiang, N.

Jiang, Y.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Y. Jiang, Y. J. Zi, G. F. Bai, and J. Tian, “All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering,” Opt. Lett. 43(8), 1774–1777 (2018).
[Crossref]

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Ke, J. H.

Kudielka, K.

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Lee, K. E. K.

Li, H. W.

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Li, J.

Li, Y. D.

Lin, S. L.

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

Liu, Y.

Lu, D.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Luan, F.

Luo, H.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Maleki, L.

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18(1), 73–78 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Man, J. W.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Pan, B. W.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Pan, S. L.

Peng, H.

Peng, X.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Pu, T.

X. Zhang, J. L. Zheng, T. Pu, Y. S. Zhang, Y. C. Shi, J. Li, Y. D. Li, H. T. Zhu, and X. F. Chen, “Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser,” Opt. Express 27(5), 7036–7046 (2019).
[Crossref]

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Qiu, K.

Salik, E.

E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

Sardarabadi, A. M.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Shi, Y. C.

Shum, P. P.

Tang, H.

Tang, M.

Tian, J.

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Y. Jiang, Y. J. Zi, G. F. Bai, and J. Tian, “All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering,” Opt. Lett. 43(8), 1774–1777 (2018).
[Crossref]

van der Veen, A. J.

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Wang, A.

Wang, C.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Wang, F. L.

Wang, P.

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Wang, S. Y.

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Wang, W.

Wang, X.

Wang, Y. T.

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Wang, Z.

Wong, J. H.

Xia, Y.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

Xiao, J. L.

Xie, L.

Xiong, J. T.

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Xu, J.

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Xu, L.

Xu, Y.

Xue, C.

Yang, E. Z.

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yang, Y.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yang, Y. D.

Yao, J. P.

Yao, X. S.

X. S. Yao, L. Davis, and L. Maleki, “Coupled optoelectronic oscillators for generating both RF signal and optical pulses,” J. Lightwave Technol. 18(1), 73–78 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

X. S. Yao, “High-quality microwave signal generation by use of Brillouin scattering in optical fibers,” Opt. Lett. 22(17), 1329–1331 (1997).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

You, X.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yu, J. L.

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yu, N.

E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

Yu, Y.

Yuan, D.

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

Yuan, H. Q.

Zhang, C.

Zhang, F. Z.

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Zhang, H. G.

Zhang, L. M.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Zhang, L. T.

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Zhang, T. T.

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Zhang, X.

Zhang, X. Y.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Zhang, Y. S.

Zhao, L. J.

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Zheng, J. L.

X. Zhang, J. L. Zheng, T. Pu, Y. S. Zhang, Y. C. Shi, J. Li, Y. D. Li, H. T. Zhu, and X. F. Chen, “Simple frequency-tunable optoelectronic oscillator using integrated multi-section distributed feedback semiconductor laser,” Opt. Express 27(5), 7036–7046 (2019).
[Crossref]

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

Zhou, J.

Zhou, Z. Y.

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

Zhu, D.

Zhu, H. L.

Zhu, H. T.

Zhu, L.

Zhu, N. H.

Zhu, X.

Zi, Y. J.

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

Y. Jiang, Y. J. Zi, G. F. Bai, and J. Tian, “All-optical microwave oscillator based on semiconductor optical amplifier and stimulated Brillouin scattering,” Opt. Lett. 43(8), 1774–1777 (2018).
[Crossref]

IEEE Commun. Mag. (1)

C. Wang, F. Haider, X. Gao, X. You, Y. Yang, D. Yuan, H. M. Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture and key technologies for 5G wireless communication networks,” IEEE Commun. Mag. 52(2), 122–130 (2014).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

C. H. Chu, S. L. Lin, S. C. Chan, and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,” IEEE J. Quantum Electron. 48(11), 1389–1396 (2012).
[Crossref]

IEEE Photonics J. (1)

B. W. Pan, D. Lu, L. M. Zhang, and L. J. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (7)

E. Salik, N. Yu, and L. Maleki, “An ultralow phase noise coupled optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

T. T. Zhang, J. T. Xiong, P. Wang, J. L. Zheng, F. Z. Zhang, T. Pu, and X. F. Chen, “Tunable Optoelectronic Oscillator Using FWM Dynamics of an Optical-Injected DFB Laser,” IEEE Photonics Technol. Lett. 27(12), 1313–1316 (2015).
[Crossref]

X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photonics Technol. Lett. 10(1), 138–140 (1998).
[Crossref]

H. Luo, Y. Jiang, R. Y. Dong, Y. J. Zi, X. Y. Zhang, and J. Tian, “A tunable single-mode all-optical microwave oscillator by using period-one oscillation in DFB-LD,” IEEE Photonics Technol. Lett. 31(6), 491–494 (2019).
[Crossref]

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photonics Technol. Lett. 10(2), 264–266 (1998).
[Crossref]

Y. Jiang, J. L. Yu, Y. T. Wang, L. T. Zhang, and E. Z. Yang, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Y. Jiang, G. F. Bai, L. Hu, H. W. Li, Z. Y. Zhou, J. Xu, and S. Y. Wang, “Frequency Locked Single-Mode Optoelectronic Oscillator by Using Low Frequency RF Signal Injection,” IEEE Photonics Technol. Lett. 25(4), 382–384 (2013).
[Crossref]

IEEE Trans. Signal Process. (1)

A. M. Sardarabadi, A. J. van der Veen, and A. J. Boonstra, “Spatial Filtering of RF Interference in Radio Astronomy Using a Reference Antenna Array,” IEEE Trans. Signal Process. 64(2), 432–447 (2016).
[Crossref]

J. Lightwave Technol. (6)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref]

Opt. Commun. (1)

R. Y. Dong, Y. Jiang, H. Luo, Y. J. Zi, Y. Xia, Y. T. He, and X. Y. Zhang, “Active ring resonance cavity assisted single-mode all-optical microwave oscillator,” Opt. Commun. 435, 16–19 (2019).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The configuration of the proposed all-optical coupled microwave oscillator. ODL: optical delay line, OBPF: optical bandpass filter, EDFA: erbium-doped fiber amplifier, OC: optical coupler, PC: polarization controller, ISO: isolator, SOA: semiconductor optical amplifier, Cir: circulator, ECL: external cavity laser, ATT: attenuator, DFB-LD: distributed-feedback laser diode, SMF: single-mode fiber, PD: photodetector, OSA: optical spectrum analyzer, ESA: electrical spectrum analyzer, Osc: oscilloscope.
Fig. 2.
Fig. 2. The mode characteristics of FRL and the principle of frequency selection process. (a) The cavity modes of single-loop FRL. (b) The cavity modes of dual-loop FRL. (c) After transferring the cavity modes on the center wavelength of ECL. (d) Selective amplification of one cavity mode by optical injection locking.
Fig. 3.
Fig. 3. The FSR measurement of the FRL. (a) Single-loop FRL. (b) Dual-loop FRL. Insert: a zoom in view of the dominant beating frequency.
Fig. 4.
Fig. 4. The schematic diagram and experimental results of the optical heterodyning test. (a) Schematic diagram of the optical heterodyning system. ECL: external cavity laser, DFB-LD: distributed-feedback laser diode, PC: polarization controller, OC: optical coupler, PD: photodetector, ESA: electrical spectrum analyzer. (b) The measurement of Long-term wavelength drift within 1 hour.
Fig. 5.
Fig. 5. The measured RF spectrum after transferring the cavity modes on the center wavelength of the ECL.
Fig. 6.
Fig. 6. The measured optical spectra and the corresponding RF spectrum without feedback modulation. (a) The optical spectra before and after injection locking. (b) The corresponding RF spectrum without feedback modulation.
Fig. 7.
Fig. 7. The measured RF spectra, waveform and frequency stability of the generated microwave signal. (a) The overall view of the RF spectrum. (b) The RF spectrum of the generated 14.23-GHz microwave signal with a SPAN of 1 GHz. Inset: the corresponding long-term frequency drift within 1-hour measurement. (c) Detailed RF spectrum. Inset: the corresponding waveform. (d) Long-term frequency drift within 1-hour measurement with a span of 500 kHz.
Fig. 8.
Fig. 8. Tunability of the proposed system with tuning range from 6.93 to 25.54 GHz.
Fig. 9.
Fig. 9. SSB phase noise performances at different microwave frequencies.

Metrics