Abstract

We propose a protocol to protect the quantum states and entanglements from finite-temperature thermal noise via quantum gates. Compared to the common protocols protecting the quantum states and entanglements by using weak measurements and their reversals, no time-consuming weak measurements are needed in the present protocol and consequently, it is much faster. We also discuss the possible implementation of the protocol in cavity QED system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Avoiding entanglement sudden death using single-qubit quantum measurement reversal

Hyang-Tag Lim, Jong-Chan Lee, Kang-Hee Hong, and Yoon-Ho Kim
Opt. Express 22(16) 19055-19068 (2014)

Efficient distributed controlled Z gate without ancilla single-photons via cross-phase modulation

Meng-Zheng Zhu and Liu Ye
J. Opt. Soc. Am. B 31(3) 405-411 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford, 2002).
  2. H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge, 2009).
  3. P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79(17), 3306–3309 (1997).
    [Crossref]
  4. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
    [Crossref]
  5. S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
    [Crossref]
  6. J. C. Lee, Y. C. Jeong, Y. S. Kim, and Y. H. Kim, “Experimental demonstration of decoherence suppression via quantum measurement reversal,” Opt. Express 19(17), 16309–16316 (2011).
    [Crossref]
  7. Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
    [Crossref]
  8. N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
    [Crossref]
  9. Y. S. Kim, Y. W. Cho, Y. S. Ra, and Y. H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17(14), 11978–11985 (2009).
    [Crossref]
  10. H. T. Lim, J. C. Lee, K. H. Hong, and Y. H. Kim, “Avoiding entanglement sudden death using single-qubit quantum measurement reversal,” Opt. Express 22(16), 19055 (2014).
    [Crossref]
  11. Y. S. Kim, J. C. Lee, O. Kwon, and Y. H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nat. Phys. 8(2), 117–120 (2012).
    [Crossref]
  12. Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
    [Crossref]
  13. X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
    [Crossref]
  14. C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
    [Crossref]
  15. Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
    [Crossref]
  16. D. J. Starling and N. S. Williams, “Efficacy of measurement reversal for stochastic disturbances,” Phys. Rev. A 88(2), 024304 (2013).
    [Crossref]
  17. A. Royer, “Reversible quantum measurements on a spin 1/2 and measuring the state of a single system,” Phys. Rev. Lett. 73(7), 913–917 (1994).
    [Crossref]
  18. A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97(16), 166805 (2006).
    [Crossref]
  19. Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
    [Crossref]
  20. M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
    [Crossref]
  21. S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
    [Crossref]
  22. X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
    [Crossref]
  23. S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
    [Crossref]
  24. W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
    [Crossref]
  25. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge, 2000).
  26. M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82(12), 2598–2601 (1999).
    [Crossref]
  27. J. Von Neumann, mathematical foundations of quantum mechanics (Princeton, 1955).
  28. M. A. Nielsen and C. M. Caves, “Reversible quantum operations and their application to teleportation,” Phys. Rev. A 55(4), 2547–2556 (1997).
    [Crossref]
  29. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
    [Crossref]
  30. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
    [Crossref]
  31. A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
    [Crossref]
  32. A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
    [Crossref]
  33. W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61(6), 063817 (2000).
    [Crossref]
  34. B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
    [Crossref]
  35. J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
    [Crossref]
  36. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
    [Crossref]
  37. E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Phys. Rev. Lett. 98(24), 240601 (2007).
    [Crossref]
  38. M. O. Scully and M. S. Zubairy, Quantum optics (New York, 1997).
  39. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
    [Crossref]
  40. S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
    [Crossref]
  41. L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
    [Crossref]

2017 (1)

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

2016 (3)

S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
[Crossref]

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

2014 (4)

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

H. T. Lim, J. C. Lee, K. H. Hong, and Y. H. Kim, “Avoiding entanglement sudden death using single-qubit quantum measurement reversal,” Opt. Express 22(16), 19055 (2014).
[Crossref]

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

2013 (3)

D. J. Starling and N. S. Williams, “Efficacy of measurement reversal for stochastic disturbances,” Phys. Rev. A 88(2), 024304 (2013).
[Crossref]

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
[Crossref]

2012 (3)

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
[Crossref]

Y. S. Kim, J. C. Lee, O. Kwon, and Y. H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nat. Phys. 8(2), 117–120 (2012).
[Crossref]

2011 (2)

M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
[Crossref]

J. C. Lee, Y. C. Jeong, Y. S. Kim, and Y. H. Kim, “Experimental demonstration of decoherence suppression via quantum measurement reversal,” Opt. Express 19(17), 16309–16316 (2011).
[Crossref]

2010 (1)

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

2009 (2)

Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
[Crossref]

Y. S. Kim, Y. W. Cho, Y. S. Ra, and Y. H. Kim, “Reversing the weak quantum measurement for a photonic qubit,” Opt. Express 17(14), 11978–11985 (2009).
[Crossref]

2007 (4)

E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Phys. Rev. Lett. 98(24), 240601 (2007).
[Crossref]

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

2006 (1)

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97(16), 166805 (2006).
[Crossref]

2004 (1)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

2000 (1)

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61(6), 063817 (2000).
[Crossref]

1999 (3)

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82(12), 2598–2601 (1999).
[Crossref]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

1997 (2)

M. A. Nielsen and C. M. Caves, “Reversible quantum operations and their application to teleportation,” Phys. Rev. A 55(4), 2547–2556 (1997).
[Crossref]

P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79(17), 3306–3309 (1997).
[Crossref]

1996 (1)

J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
[Crossref]

1995 (1)

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

1994 (1)

A. Royer, “Reversible quantum measurements on a spin 1/2 and measuring the state of a single system,” Phys. Rev. Lett. 73(7), 913–917 (1994).
[Crossref]

1993 (1)

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

Al-Amri, M.

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
[Crossref]

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
[Crossref]

An, N. B.

Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
[Crossref]

Bache, M.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Bemu, J.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

Bergmann, K.

J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
[Crossref]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Boukobza, E.

E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Phys. Rev. Lett. 98(24), 240601 (2007).
[Crossref]

Brambilla, E.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Breuer, H.-P.

H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford, 2002).

Brune, M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Cao, Y.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Cao, Z. L.

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

Carnal, O.

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

Caves, C. M.

M. A. Nielsen and C. M. Caves, “Reversible quantum operations and their application to teleportation,” Phys. Rev. A 55(4), 2547–2556 (1997).
[Crossref]

Chen, Z. H.

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Cho, Y. W.

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge, 2000).

Davidovich, L.

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

Deléglise, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

Doustimotlagh, N.

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

Du, C. Q.

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

Esfahani, S. S.

S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
[Crossref]

Gatti, A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Gleyzes, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

Guerlin, C.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

Han, Y.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Haroche, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

He, Z.

Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
[Crossref]

Hoff, U. B.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

Hong, K. H.

Jeong, Y. C.

Jordan, A. N.

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97(16), 166805 (2006).
[Crossref]

Kim, Y. H.

Kim, Y. S.

Kimble, H. J.

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61(6), 063817 (2000).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

Knill, E.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
[Crossref]

Koashi, M.

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82(12), 2598–2601 (1999).
[Crossref]

Korotkov, A. N.

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97(16), 166805 (2006).
[Crossref]

Kuhr, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

Kwek, L. C.

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Kwon, O.

Y. S. Kim, J. C. Lee, O. Kwon, and Y. H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nat. Phys. 8(2), 117–120 (2012).
[Crossref]

Lange, W.

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61(6), 063817 (2000).
[Crossref]

Lee, J. C.

Li, Y.

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Li, Y. H.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Liao, Z. Y.

S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
[Crossref]

Lim, H. T.

Lloyd, S.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
[Crossref]

Long, G. L.

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

Lugiato, L. A.

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

Ma, Z. H.

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Man, Z. X.

Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
[Crossref]

Marte, P.

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

Martin, J.

J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
[Crossref]

Milburn, G. J.

H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge, 2009).

Motzoi, F.

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

Nielsen, M. A.

M. A. Nielsen and C. M. Caves, “Reversible quantum operations and their application to teleportation,” Phys. Rev. A 55(4), 2547–2556 (1997).
[Crossref]

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge, 2000).

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Osnaghi, S.

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Pan, J. W.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Parkins, A. S.

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

Peng, C. Z.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Peng, K.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Petruccione, F.

H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford, 2002).

Ra, Y. S.

Raimond, J. M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Rasetti, M.

P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79(17), 3306–3309 (1997).
[Crossref]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

Ren, J. G.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Royer, A.

A. Royer, “Reversible quantum measurements on a spin 1/2 and measuring the state of a single system,” Phys. Rev. Lett. 73(7), 913–917 (1994).
[Crossref]

Saffman, M.

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

Scully, M. O.

M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum optics (New York, 1997).

Serafini, A.

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Shore, B. W.

J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
[Crossref]

Starling, D. J.

D. J. Starling and N. S. Williams, “Efficacy of measurement reversal for stochastic disturbances,” Phys. Rev. A 88(2), 024304 (2013).
[Crossref]

Suhail Zubairy, M.

S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
[Crossref]

Sun, Q.

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
[Crossref]

Tannor, D. J.

E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Phys. Rev. Lett. 98(24), 240601 (2007).
[Crossref]

Theis, L. S.

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

Ueda, M.

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82(12), 2598–2601 (1999).
[Crossref]

Viola, L.

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
[Crossref]

Von Neumann, J.

J. Von Neumann, mathematical foundations of quantum mechanics (Princeton, 1955).

Wang, B.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Wang, H.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Wang, S. C.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Wang, S. H.

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

Wang, X. B.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Wilhelm, F. K.

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

Williams, N. S.

D. J. Starling and N. S. Williams, “Efficacy of measurement reversal for stochastic disturbances,” Phys. Rev. A 88(2), 024304 (2013).
[Crossref]

Wiseman, H. M.

H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge, 2009).

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

Xia, Y. J.

Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
[Crossref]

Xiao, J.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Xiao, M.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Yang, M.

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

Yang, Q.

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

Yang, X.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Yao, C. M.

Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
[Crossref]

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Yin, J.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

You, C. L.

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

Yu, Z. W.

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

Zanardi, P.

P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79(17), 3306–3309 (1997).
[Crossref]

Zeng, X. D.

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

Zhang, C.

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

Zhou, J.

Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
[Crossref]

Zhou, W. J.

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

Zhu, S. Y.

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

Zoller, P.

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

Zong, X. L.

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

Zou, W. J.

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

Zubairy, M. S.

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
[Crossref]

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
[Crossref]

M. O. Scully and M. S. Zubairy, Quantum optics (New York, 1997).

Appl. Phys. Lett. (1)

S. Kuhr, S. Gleyzes, C. Guerlin, J. Bemu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, and J. M. Raimond, “Ultrahigh finesse Fabry–Pérot superconducting resonator,” Appl. Phys. Lett. 90(16), 164101 (2007).
[Crossref]

Europhys. Lett. (1)

N. Doustimotlagh, S. H. Wang, C. L. You, and G. L. Long, “Enhancement of quantum correlations between two particles under decoherence in finite-temperature environment,” Europhys. Lett. 106(6), 60003 (2014).
[Crossref]

J. Phys. B: At., Mol. Opt. Phys. (2)

M. Al-Amri, M. O. Scully, and M. S. Zubairy, “Reversing the weak measurement on a qubit,” J. Phys. B: At., Mol. Opt. Phys. 44(16), 165509 (2011).
[Crossref]

S. S. Esfahani, Z. Y. Liao, and M. Suhail Zubairy, “Robust quantum state recovery from amplitude damping within a mixed states framework,” J. Phys. B: At., Mol. Opt. Phys. 49(15), 155501 (2016).
[Crossref]

Nat. Phys. (1)

Y. S. Kim, J. C. Lee, O. Kwon, and Y. H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal,” Nat. Phys. 8(2), 117–120 (2012).
[Crossref]

Nature (London) (1)

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bemu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446(7133), 297–300 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. A (16)

Z. He, C. M. Yao, and J. Zhou, “Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,” Phys. Rev. A 88(4), 044304 (2013).
[Crossref]

Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82(5), 052323 (2010).
[Crossref]

X. L. Zong, C. Q. Du, M. Yang, Q. Yang, and Z. L. Cao, “Protecting remote bipartite entanglement against amplitude damping by local unitary operations,” Phys. Rev. A 90(6), 062345 (2014).
[Crossref]

C. M. Yao, Z. H. Ma, Z. H. Chen, and A. Serafini, “Robust tripartite-to-bipartite entanglement localization by weak measurements and reversal,” Phys. Rev. A 86(2), 022312 (2012).
[Crossref]

Z. X. Man, Y. J. Xia, and N. B. An, “Manipulating entanglement of two qubits in a common environment by means of weak measurements and quantum measurement reversals,” Phys. Rev. A 86(1), 012325 (2012).
[Crossref]

D. J. Starling and N. S. Williams, “Efficacy of measurement reversal for stochastic disturbances,” Phys. Rev. A 88(2), 024304 (2013).
[Crossref]

Q. Sun, M. Al-Amri, and M. S. Zubairy, “Reversing the weak measurement of an arbitrary field with finite photon number,” Phys. Rev. A 80(3), 033838 (2009).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, O. Carnal, and H. J. Kimble, “Quantum-state mapping between multilevel atoms and cavity light fields,” Phys. Rev. A 51(2), 1578–1596 (1995).
[Crossref]

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61(6), 063817 (2000).
[Crossref]

B. Wang, Y. Han, J. Xiao, X. Yang, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms,” Phys. Rev. A 75(5), 051801 (2007).
[Crossref]

J. Martin, B. W. Shore, and K. Bergmann, “Coherent population transfer in multilevel systems with magnetic sublevels. III. Experimental results,” Phys. Rev. A 54(2), 1556–1569 (1996).
[Crossref]

X. D. Zeng, M. Al-Amri, S. Y. Zhu, and M. S. Zubairy, “Proposal for reversing the weak measurement with arbitrary maximum photon number,” Phys. Rev. A 93(5), 053826 (2016).
[Crossref]

S. C. Wang, Z. W. Yu, W. J. Zou, and X. B. Wang, “Protecting quantum states from decoherence of finite temperature using weak measurement,” Phys. Rev. A 89(2), 022318 (2014).
[Crossref]

W. J. Zhou, Y. H. Li, S. C. Wang, Y. Cao, J. G. Ren, J. Yin, C. Z. Peng, X. B. Wang, and J. W. Pan, “Protecting entanglement from finite-temperature thermal noise via weak measurement and quantum measurement reversal,” Phys. Rev. A 95(4), 042342 (2017).
[Crossref]

M. A. Nielsen and C. M. Caves, “Reversible quantum operations and their application to teleportation,” Phys. Rev. A 55(4), 2547–2556 (1997).
[Crossref]

L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, “High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses,” Phys. Rev. A 94(3), 032306 (2016).
[Crossref]

Phys. Rev. Lett. (11)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80(10), 2245–2248 (1998).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Coherent operation of a tunable quantum phase gate in cavity QED,” Phys. Rev. Lett. 83(24), 5166–5169 (1999).
[Crossref]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71(19), 3095–3098 (1993).
[Crossref]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93(9), 093602 (2004).
[Crossref]

E. Boukobza and D. J. Tannor, “Three-level systems as amplifiers and attenuators: A thermodynamic analysis,” Phys. Rev. Lett. 98(24), 240601 (2007).
[Crossref]

M. Koashi and M. Ueda, “Reversing measurement and probabilistic quantum error correction,” Phys. Rev. Lett. 82(12), 2598–2601 (1999).
[Crossref]

A. Royer, “Reversible quantum measurements on a spin 1/2 and measuring the state of a single system,” Phys. Rev. Lett. 73(7), 913–917 (1994).
[Crossref]

A. N. Korotkov and A. N. Jordan, “Undoing a weak quantum measurement of a solid-state qubit,” Phys. Rev. Lett. 97(16), 166805 (2006).
[Crossref]

P. Zanardi and M. Rasetti, “Noiseless quantum codes,” Phys. Rev. Lett. 79(17), 3306–3309 (1997).
[Crossref]

L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Phys. Rev. Lett. 82(12), 2417–2421 (1999).
[Crossref]

S. C. Wang, Y. Li, X. B. Wang, and L. C. Kwek, “Operator quantum Zeno effect: Protecting quantum information with noisy two-qubit interactions,” Phys. Rev. Lett. 110(10), 100505 (2013).
[Crossref]

Other (5)

H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford, 2002).

H. M. Wiseman and G. J. Milburn, Quantum measurement and control (Cambridge, 2009).

J. Von Neumann, mathematical foundations of quantum mechanics (Princeton, 1955).

M. O. Scully and M. S. Zubairy, Quantum optics (New York, 1997).

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. The schematics for the protocol of the quantum state protection. Ancilla qubits interact with the system qubit to construct CNOT gates. (a) The CNOT gates are applied after the qubit undergoes the FTTN. (b ) Two CNOT gates are applied before and after the qubit undergoes the FTTN.
Fig. 2.
Fig. 2. The increase of the fidelity $F_{increase}$. Here $r=0.5$ and $p=0.9$.
Fig. 3.
Fig. 3. The increase of the fidelity $F_{increase}$. The black-solid line is for the case shown in Fig. 1(a) while the red-dashed line is for the case shown in Fig. 1(b). Here $x_l=0.65, x_r=2$. The other parameters are the same as in Fig. 2.
Fig. 4.
Fig. 4. The average increase of the fidelity $F_{increase}$ for $1000$ random generated initial mixed states. Here $r=0.5$ and $p=0.9$.
Fig. 5.
Fig. 5. The schematics for the protocol to protect the quantum entanglement from FTTN. Two ancilla qubits interact with the system qubits separately before and after the quantum state undergoes the thermal noise to construct the CNOT gates.
Fig. 6.
Fig. 6. The increase of the concurrence $E_{increase}$. In (a), $x_l$ is set to 0.65 while in (b), the initial state is set to be $(|ee\rangle +|gg\rangle )/\sqrt {2}$. Here $r=0.5$ and $p=0.9$.
Fig. 7.
Fig. 7. The average increase of the concurrence $E_{increase}$ for $1000$ random generated initial mixed states. Here $r=0.5$ and $p=0.9$.
Fig. 8.
Fig. 8. (a) The physical implementation of the proposal. Two identical atoms fly through two identical cavities. $\Omega _1$ is coupling strength between the classical laser and the transition dipole from $|a\rangle$ to $|c\rangle$ of the atom shown in (b); $g_c$ is the coupling strength between the quantum field and the transition dipole from $|a\rangle$ to $|g\rangle$; and $\Omega _2$ is a $\pi$ pulse that can transfer the atom between state $|c\rangle$ and $|e\rangle$. The atoms on the superposition states of $|e\rangle$ and $|g\rangle$ undergo spontaneous decay and thermal photon excitation in the FTTN area, which can be realized by illuminating this area by thermal light. (b) The energy structure of atoms 1 and 2. (c) The right is the physical diagram of the CNOT gates, where $R_{1,2,3}$ are Ramsey laser beams. The left is the atomic structure of the ancilla qubit.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ρ s n = m = 1 4 E m ρ s k E m ,
E 1 = p ( 1 0 0 1 r ) ; E 2 = ( 0 p r 0 0 ) ; E 3 = 1 p ( 1 r 0 0 1 ) ; E 4 = ( 0 0 r ( 1 p ) 0 ) .
ρ a = | φ a φ | ,
| φ a = cos θ r | 0 + sin θ r | 1 ,
C = ( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 )
C [ ρ s n ρ a ] C = 1 1 + x r 2 ( ρ ~ 11 ρ ~ 11 x r ρ ~ 12 x r ρ ~ 12 ρ ~ 11 x r ρ ~ 11 x r 2 ρ ~ 12 x r 2 ρ ~ 12 x r ρ ~ 21 x r ρ ~ 21 x r 2 ρ ~ 22 x r 2 ρ ~ 22 x r ρ ~ 21 ρ ~ 21 x r ρ ~ 22 x r ρ ~ 22 ) .
ρ s f = 1 ρ ~ 11 + ρ ~ 22 x r 2 ( ρ ~ 11 ρ ~ 12 x r ρ ~ 21 x r ρ ~ 22 x r 2 )
F ( ρ s k , ρ s f ) = | α 1 | 4 ( 1 r ) + | α 1 | 2 p r + 2 | α 1 α 2 | 2 1 r x r + | α 2 | 2 ( | α 2 | 2 + | α 1 | 2 r p r ) x r 2 | α 1 | 2 ( 1 r ) + p r + ( | α 2 | 2 + | α 1 | 2 r p r ) x r 2 .
ρ s f = 1 ρ ~ 11 x r 2 + ρ ~ 22 ( ρ ~ 11 x r 2 ρ ~ 12 x r ρ ~ 21 x r ρ ~ 22 )
ρ ~ 11 = ρ 11 ( 1 r + p r ) 2 + ( ρ 22 + ρ 33 ) ( 1 r + p r ) p r + ρ 44 p 2 r 2 ; ρ ~ 12 = ρ ~ 21 = ρ 12 ( 1 r + p r ) 1 r + ρ 34 p r 1 r ; ρ ~ 22 = ( 1 r + p r ) [ ρ 22 ( 1 p r ) + ρ 11 r ( 1 p ) ] + p r [ ρ 44 ( 1 p r ) + ρ 33 r ( 1 p ) ] ; ρ ~ 13 = ρ ~ 31 = 1 r [ ρ 13 ( 1 r + p r ) + ρ 24 p r ] ; ρ ~ 14 = ρ ~ 41 = ρ 14 ( 1 r ) ; ρ ~ 23 = ρ ~ 32 = ρ 23 ( 1 r ) ; ρ ~ 24 = ρ ~ 42 = 1 r [ ρ 24 ( 1 p r ) + ρ 13 r ( 1 p ) ] ; ρ ~ 33 = ( 1 p r ) [ ρ 33 ( 1 r + p r ) + ρ 44 p r ] + [ ρ 11 ( 1 r + p r ) + ρ 22 p r ] r ( 1 p ) ; ρ ~ 34 = ρ ~ 43 = ρ 34 ( 1 p r ) 1 r + ρ 12 r ( 1 p ) 1 r ; ρ ~ 44 = ( 1 p r ) [ ρ 44 ( 1 p r ) + ρ 33 r ( 1 p ) ] + [ ρ 22 ( 1 p r ) + ρ 11 r ( 1 p ) ] r ( 1 p ) .
ρ s , a k = ρ a 1 ρ s k ρ a 2 .
ρ s , a C l = ( U C l C l ) ρ s , a k ( U C l C l )
U C l = ( 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 ) ,
ρ s C l = T r a 1 , a 2 [ T l ρ s , a C l T l ]
T l = ( | 0 a 1 0 | ( 1 0 0 1 ) ) ( ( 1 0 0 1 ) | 0 a 2 0 | ) .
ρ s C l = 1 Λ 1 ( | α 1 | 2 0 0 α 1 α 2 x l 2 0 0 0 0 0 0 0 0 α 1 α 2 x l 2 0 0 | α 2 | 2 x l 4 )
E = max { 0 , 2 ( | ρ 14 | ρ 22 ) } .
ρ a R 1 = H θ l ρ a H θ l ,
H θ = ( cos θ sin θ sin θ cos θ ) .
ρ a R 2 = H π / 4 ρ a R 1 H π / 4 .
H ^ e f f = g a 2 Δ ( a a | A A | a a | U U | ) .
ρ s , a p h a s e = P τ ( ρ s k ρ a R 2 ) P τ ,
P τ = ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 e i g a 2 τ Δ )
ρ s , a R 3 = ( I H π / 4 ) P τ ( I H π / 4 ) ( ρ s k ρ a R 1 ) ( I H π / 4 ) P τ ( I H π / 4 ) = C ρ s k ρ a R 1 C ,
( Ω 1 | g g c | c ) / | Ω 1 | 2 + | g c | 2 .
| c | e .
ρ ˙ ( t ) = γ 0 2 ( N + 1 ) [ 2 σ ρ ( t ) σ + σ + σ ρ ( t ) ρ ( t ) σ + σ ] + γ 0 2 ( N ) [ 2 σ + ρ ( t ) σ σ σ + ρ ( t ) ρ ( t ) σ σ + ] .

Metrics