Abstract

A simple fiber-optic sensor for simultaneous measurement of high pressure and high temperature was proposed. The sensor was simply fabricated by splicing two sections of silica capillary tubes (SCTs) with different inner diameters to the single-mode fiber. The thick core SCT functions as a Fabry-Perot (FP) micro-cavity and an anti-resonant reflecting waveguide at the same time. The two different sensing mechanisms lead to the high contrast sensitivity values of pressure and temperature (‒3.76 nm/MPa, 27.7 pm/°C and 4.24 nm/MPa, 0.82 pm/°C). We also proposed a simple and effective method to evaluate the actual sensitivities of two-parameter sensors by using linear programming, which shows that our sensor is more sensitive than others in high pressure and high temperature simultaneous detection. Besides, low cost, good mechanical property and convenient reflective probe make the sensor more competitive in actual application.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Antiresonant mechanism based self-temperature-calibrated fiber optic Fabry–Perot gas pressure sensors

Hongchun Gao, Yi Jiang, Liuchao Zhang, Yang Cui, Yuan Jiang, Jingshan Jia, and Lan Jiang
Opt. Express 27(16) 22181-22189 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. N. Wu, G. F. Yan, C. L. Wang, Z. G. Lian, X. Chen, and S. L. He, “FBG Incorporated Side-Open Fabry–Perot Cavity for Simultaneous Gas Pressure and Temperature Measurements,” J. Lightwave Technol. 34(16), 3761–3766 (2016).
    [Crossref]
  2. Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
    [Crossref]
  3. T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
    [Crossref]
  4. F. Xu, D. X. Ren, X. L. Shi, C. Li, W. W. Lu, L. Lu, L. Lu, and B. L. Yu, “High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm,” Opt. Lett. 37(2), 133–135 (2012).
    [Crossref]
  5. L. H. Cheng, C. Z. Wang, Y. Y. Huang, H. Liang, and B. O. Guan, “Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor,” Opt. Express 24(17), 19600–19606 (2016).
    [Crossref]
  6. J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  7. C. R. Liao, S. Liu, L. Xu, C. Wang, Y. P. Wang, Z. Y. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry–Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref]
  8. S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff- Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
    [Crossref]
  9. C. R. Liao and D. N. Wang, “Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing,” Photonic Sens. 3(2), 97–101 (2013).
    [Crossref]
  10. M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
    [Crossref]
  11. Z. Zhang, J. He, B. Du, F. C. Zhang, K. K. Guo, and Y. P. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
    [Crossref]
  12. M. X. Hou, F. Zhu, Y. Wang, Y. P. Wang, C. R. Liao, S. Liu, and P. X. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref]
  13. R. H. Wang and X. G. Qiao, “Hybrid optical fiber Fabry–Perot interferometer for simultaneous measurement of gas refractive index and temperature,” Appl. Opt. 53(32), 7724–7728 (2014).
    [Crossref]
  14. B. Xu, Y. M. Liu, D. N. Wang, and J. Q. Li, “Fiber Fabry–Pérot Interferometer for Measurement of Gas Pressure and Temperature,” J. Lightwave Technol. 34(21), 4920–4925 (2016).
    [Crossref]
  15. H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
    [Crossref]
  16. J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
    [Crossref]
  17. E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
    [Crossref]
  18. C. R. Liao, T. Y. Hu, and D. N. Wang, “Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing,” Opt. Express 20(20), 22813–22818 (2012).
    [Crossref]
  19. K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  20. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
    [Crossref]
  21. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
    [Crossref]
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical wavelength,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref]
  23. W. H. Tsai and C. J. Lin, “A Novel Structure for the Intrinsic Fabry–Perot Fiber-Optic Temperature Sensor,” J. Lightwave Technol. 19(5), 682–686 (2001).
    [Crossref]
  24. B. Feng, Y. Liu, and S. L. Qu, “High-temperature sensor based on resonant reflection in hollow core fiber,” Opt. Eng. 55(10), 106127 (2016).
    [Crossref]
  25. J. Mathew, O. Schneller, D. Polyzos, D. Havermann, R. M. Carter, W. N. MacPherson, D. P. Hand, and R. R. J. Maier, “In-Fiber Fabry–Perot Cavity Sensor for High-Temperature Applications,” J. Lightwave Technol. 33(12), 2419–2425 (2015).
    [Crossref]

2019 (2)

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

2018 (3)

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

Z. Zhang, J. He, B. Du, F. C. Zhang, K. K. Guo, and Y. P. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry–Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref]

2016 (7)

2015 (1)

2014 (4)

2013 (1)

C. R. Liao and D. N. Wang, “Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

2012 (2)

2011 (2)

M. Ding, M. N. Zervas, and G. Brambilla, “A compact broadband microfiber Bragg grating,” Opt. Express 19(16), 15621–15626 (2011).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

2002 (1)

2001 (1)

1993 (1)

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Abeeluck, A. K.

Aizzuddin, A. M.

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

Birch, K. P.

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Brambilla, G.

Carter, R. M.

Chen, X.

Cheng, J.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

Cheng, L. H.

Cui, Y.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Ding, M.

Downs, M. J.

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Du, B.

Ebendorff- Heidepriem, H.

Eggleton, B. J.

Feng, B.

B. Feng, Y. Liu, and S. L. Qu, “High-temperature sensor based on resonant reflection in hollow core fiber,” Opt. Eng. 55(10), 106127 (2016).
[Crossref]

Fu, H. W.

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Gao, H.

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Gao, H. C.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Gao, R.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref]

Guan, B. O.

Guo, K. K.

Hafizi, Z. M.

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

Hand, D. P.

Havermann, D.

He, J.

He, S. L.

Headley, C.

Hou, M. X.

Hu, J.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Hu, T. Y.

Huang, Y. Y.

Jia, J. S.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Jia, Z. A.

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Jia, Z. N.

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Jiang, J. F.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Jiang, L.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

Jiang, Y.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref]

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Jin, W.

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Lang, C.

Li, C.

Li, J. Q.

Li, Z. Y.

Lian, Z. G.

Liang, H.

Liao, C. R.

Lim, K. S.

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

Lin, C. J.

Litchinitser, N. M.

Liu, K.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, S.

Liu, T. G.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Liu, Y.

B. Feng, Y. Liu, and S. L. Qu, “High-temperature sensor based on resonant reflection in hollow core fiber,” Opt. Eng. 55(10), 106127 (2016).
[Crossref]

Liu, Y. G.

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Liu, Y. M.

Lu, D. F.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

Lu, L.

Lu, P. X.

Lu, W. W.

Ma, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

MacPherson, W. N.

Maier, R. R. J.

Mathew, J.

Monro, T. M.

Nguyen, L. V.

Polyzos, D.

Qi, Z. M.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

Qiao, X. G.

Qin, Z. Q.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Qu, S. L.

B. Feng, Y. Liu, and S. L. Qu, “High-temperature sensor based on resonant reflection in hollow core fiber,” Opt. Eng. 55(10), 106127 (2016).
[Crossref]

Ren, D. X.

Schneller, O.

Shao, M.

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Shi, X. L.

Tsai, W. H.

Vorathin, E.

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

Wang, C.

Wang, C. L.

Wang, C. Z.

Wang, D. N.

Wang, Q.

Wang, R. H.

Wang, S.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Wang, Y.

Wang, Y. P.

Wang, Y. X.

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Warren-Smith, S. C.

Wu, S. N.

Xu, B.

Xu, F.

Xu, L.

Yan, G. F.

Yang, D. Q.

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Yin, J. D.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Yu, B. L.

Yu, D. K.

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Zervas, M. N.

Zhang, F. C.

Zhang, L. C.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Zhang, T.

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Zhang, Z.

Zhao, Y.

Zhu, F.

Zou, S. L.

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (2)

J. D. Yin, T. G. Liu, J. F. Jiang, K. Liu, S. Wang, Z. Q. Qin, and S. L. Zou, “Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing,” IEEE Photonics Technol. Lett. 26(20), 2070–2073 (2014).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A Compact Fiber-Tip Micro-Cavity Sensor for High-Pressure Measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

IEEE Sens. J. (1)

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

J. Lightwave Technol. (4)

Metrologia (1)

K. P. Birch and M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Opt. Commun. (1)

Y. G. Liu, D. Q. Yang, Y. X. Wang, T. Zhang, M. Shao, D. K. Yu, H. W. Fu, and Z. A. Jia, “Fabrication of dual-parameter fiber-optic sensor by cascading FBG with FPI for simultaneous measurement of temperature and gas pressure,” Opt. Commun. 443, 166–171 (2019).
[Crossref]

Opt. Eng. (1)

B. Feng, Y. Liu, and S. L. Qu, “High-temperature sensor based on resonant reflection in hollow core fiber,” Opt. Eng. 55(10), 106127 (2016).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (2)

E. Vorathin, Z. M. Hafizi, A. M. Aizzuddin, and K. S. Lim, “A natural rubber diaphragm based transducer for simultaneous pressure and temperature measurement by using a single FBG,” Opt. Fiber Technol. 45, 8–13 (2018).
[Crossref]

T. Zhang, Y. G. Liu, D. Q. Yang, Y. X. Wang, H. W. Fu, Z. N. Jia, and H. Gao, “Constructed fiber-optic FPI-based multi-parameters sensor for simultaneous measurement of pressure and temperature, refractive index and temperature,” Opt. Fiber Technol. 49, 64–70 (2019).
[Crossref]

Opt. Lett. (5)

Photonic Sens. (1)

C. R. Liao and D. N. Wang, “Review of Femtosecond Laser Fabricated Fiber Bragg Gratings for High Temperature Sensing,” Photonic Sens. 3(2), 97–101 (2013).
[Crossref]

Sens. Actuators, B (1)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators, B 222, 618–624 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) Schematic diagram of the proposed sensor. (b) The FP interference and anti-resonant reflecting guidance mechanisms in the thick core SCT.
Fig. 2.
Fig. 2. (a)-(c) Optical microscopic images of the samples A, B and C. (d) The measured reflection spectra of three samples at normal pressure and temperature.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup for gas pressure response.
Fig. 4.
Fig. 4. (a) Reflection spectra of sample A under different pressure. (b) The shift of the upper envelope of the reflection spectrum around 1550 nm under different pressure. (c) The shift of interference valley around 1550 nm under different pressure. (d) The linearly fitting results of central wavelengths of the envelope and the interference valley under different pressure.
Fig. 5.
Fig. 5. (a) The linearly fitting results of central wavelengths of the envelope and the interference valley under different pressure for sample B. (b) The linearly fitting results of central wavelengths of the envelope and the interference valley under different pressure for sample C.
Fig. 6.
Fig. 6. (a) Reflection spectra of sample A under different temperature. (b) The shift of the upper envelope of the reflection spectrum around 1550 nm under different temperature. (c) The shift of interference valley around 1550 nm under different temperature. (d) The linearly fitting results of central wavelengths of the envelope and the interference valley under different temperature.
Fig. 7.
Fig. 7. (a) The linearly fitting results of central wavelengths of the envelope and the interference valley under different temperature for sample B. (b) The linearly fitting results of central wavelengths of the envelope and the interference valley under different temperature for sample C.
Fig. 8.
Fig. 8. (a) The measured spectra at 300 °C, 500 °C, 700 °C, and 900 °C in both temperature increasing and decreasing processes. (b) The linear fitted results of the central wavelength shift values of the upper envelope and the interference valley.
Fig. 9.
Fig. 9. The comparison of the linear programming region of our work with other reported sensors.

Tables (1)

Tables Icon

Table 1. The comparison of sensors for the simultaneous measurement of pressure and temperature

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ m = 4 L 2 m + 1 n a i r ,
λ m p = 4 L 2 m + 1 n a i r p + 4 n a i r 2 m + 1 L p λ m n a i r n a i r p .
λ m T = 4 L 2 m + 1 n a i r T + 4 n a i r 2 m + 1 L T   =   λ m n a i r n a i r T   +   λ m L L T ,
n a i r   =   1   +   2.8793 × 10 9 × P 1 + 0.003671 × T .
λ m = 2 d m n 1 2 n a i r 2 ,
λ m p 2 n a i r d m n 1 2 n a i r 2 n a i r p = λ m n a i r n 1 2 n a i r 2 n a i r p .
λ m T 2 n 1 d m n 1 2 n a i r 2 n 1 T = λ m . n 1 n 1 2 n a i r 2 n 1 T ,
F S R = λ m λ m + 1 2 d n 1 2 n a i r 2 .
[ Δ p Δ T ] = [ s 2 T s 1 p s 2 T s 1 T s 2 p s 1 T s 1 p s 2 T s 1 T s 2 p s 2 p s 1 p s 2 T s 1 T s 2 p s 1 p s 1 p s 2 T s 1 T s 2 p ] [ Δ λ 1 Δ λ 2 ] ,
| s 1 p Δ p + s 1 T Δ T | < R ,
| s 2 p Δ p + s 2 T Δ T | < R .

Metrics