Abstract

We demonstrate an all-optical active mode of dielectric microdroplet splitting in a sandwich structure consisting of two anti-symmetrical y-cut LN:Fe substrates. The dynamic process of the microdroplet splitting and the simulation of the electrostatic interaction inside the sandwich gap show that the combination of two anti-symmetrical substrates are capable to provide a sufficient dielectrophoretic force and to reduce the unbalance of the drag forces for a stable and efficient splitting of the microdroplet. The dependences of the splitting time on the illumination intensity and the initial microdroplet size are also studied, and the results show that the microdroplet splitting process is fully governed by the establishment of the superposed photovoltaic field inside the sandwich gap. A key ratio Er/E0, representing the microdroplet splitting difficulty for a given sandwich structure, is found linearly dependent on the initial microdroplet size. These points are quite important to the integration of splitting functionality on the LN-based microfluidic chip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure

Lipin Chen, Bolin Fan, Wenbo Yan, Shaobei Li, Lihong Shi, and Hongjian Chen
Opt. Lett. 41(19) 4558-4561 (2016)

Visible-light-assisted condensation of ultrasonically atomized water vapor on LiNbO3:Fe crystals

Kaifang Gao, Xiong Zhang, Zhitao Zan, Zuoxuan Gao, E. R. Mugisha, Lihong Shi, Yingkun Ma, Feifei Li, Chao Liang, Manyi Ren, Hongjian Chen, and Wenbo Yan
Opt. Express 27(26) 37680-37694 (2019)

Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles

Wei Wang, Yen-Heng Lin, Ruei-Syuan Guan, Ten-Chin Wen, Tzung-Fang Guo, and Gwo-Bin Lee
Opt. Express 17(20) 17603-17613 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
    [Crossref]
  2. T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
    [Crossref]
  3. M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
    [Crossref]
  4. L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
    [Crossref]
  5. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
    [Crossref]
  6. S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
    [Crossref]
  7. M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
    [Crossref]
  8. A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
    [Crossref]
  9. X. Zhang, J. Wang, B. Tang, X. Tan, R. A. Rupp, L. Pan, Y. Kong, Q. Sun, and J. Xu, “Optical trapping and manipulation of metallic micro/nanoparticles via photorefractive crystals,” Opt. Express 17(12), 9981–9988 (2009).
    [Crossref]
  10. J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
    [Crossref]
  11. I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
    [Crossref]
  12. M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
    [Crossref]
  13. L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
    [Crossref]
  14. M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
    [Crossref]
  15. C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
    [Crossref]
  16. L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
    [Crossref]
  17. J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
    [Crossref]
  18. M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
    [Crossref]
  19. B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
    [Crossref]
  20. J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
    [Crossref]
  21. E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210(1), 225–246 (2005).
    [Crossref]
  22. C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
    [Crossref]
  23. A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
    [Crossref]
  24. L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
    [Crossref]

2019 (1)

2018 (2)

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

2017 (2)

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

2016 (6)

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

2015 (6)

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

2014 (1)

2013 (1)

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

2010 (1)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

2009 (1)

2008 (1)

S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
[Crossref]

2005 (2)

E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210(1), 225–246 (2005).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Agulló-López, F.

Alcázar, A.

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

Arizmendi, L.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

Arregui, C.

Ban, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Barroso, Á

Bella, J. L.

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

Blázquez-Castro, A.

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

Bragheri, F.

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Burgos, H.

Carrascosa, M.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

Chen, H.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Chen, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Coppola, S.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Cristiani, I.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Degiorgio, V.

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Denz, C.

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Elvira, I.

Esseling, M.

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Fan, B.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Ferraro, P.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
[Crossref]

García-Cabañes, A.

A. Puerto, J. F. Muñoz-Martín, A. Méndez, L. Arizmendi, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Synergy between pyroelectric and photovoltaic effects for optoelectronic nanoparticle manipulation,” Opt. Express 27(2), 804–815 (2019).
[Crossref]

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

Gazzetto, M.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

Grilli, S.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
[Crossref]

Horn, W.

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

Jubera, M.

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

Kong, Y.

Kreiss, G.

E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210(1), 225–246 (2005).
[Crossref]

Lelii, F. D.

Li, F.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Li, S.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Marchesano, V.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Matarrubia, J.

Méndez, A.

Miccio, L.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Minzioni, P.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Mondello, C.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Mugnano, M.

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Muñoz-Martín, J. F.

Muñoz-Martínez, J. F.

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

J. F. Muñoz-Martínez, M. Jubera, J. Matarrubia, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Diffractive optical devices produced by light-assisted trapping of nanoparticles,” Opt. Lett. 41(2), 432–435 (2016).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

Nava, G.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Olsson, E.

E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210(1), 225–246 (2005).
[Crossref]

Osellame, R.

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Paiè, P.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Pan, L.

Paturzo, M.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Puerto, A.

Ramiro, B.

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, H. Burgos, A. García-Cabañes, J. F. Muñoz-Martínez, and M. Carrascosa, “Optoelectronic tweezers under arbitrary illumination patterns: theoretical simulations and comparison to experiment,” Opt. Express 22(23), 29099–29110 (2014).
[Crossref]

Ramiro, J. B.

I. Elvira, J. F. Muñoz-Martínez, Á Barroso, C. Denz, J. B. Ramiro, A. García-Cabañes, F. Agulló-López, and M. Carrascosa, “Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers,” Opt. Lett. 43(1), 30–33 (2018).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

J. F. Muñoz-Martínez, I. Elvira, M. Jubera, A. García-Cabañes, J. B. Ramiro, C. Arregui, and M. Carrascosa, “Efficient photo-induced dielectrophoretic particle trapping on Fe:LiNbO3 for arbitrary two dimensional patterning,” Opt. Mater. Express 5(5), 1137–1146 (2015).
[Crossref]

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Rupp, R. A.

Sada, C.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Shi, L.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Sun, Q.

Sun, S.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Tan, X.

Tang, B.

Tano, M. D.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Vazquez, R. M.

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

Veglione, M.

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Vespini, V.

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
[Crossref]

Wang, D.

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Wang, J.

Wang, X.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Xu, J.

Yan, W.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

L. Chen, B. Fan, W. Yan, S. Li, L. Shi, and H. Chen, “Photo-assisted splitting of dielectric microdroplets in a LN-based sandwich structure,” Opt. Lett. 41(19), 4558–4561 (2016).
[Crossref]

Yang, T.

T. Yang, G. Nava, P. Minzioni, M. Veglione, F. Bragheri, F. D. Lelii, R. M. Vazquez, R. Osellame, and I. Cristiani, “Investigation of temperature effect on cell mechanics by optofluidic microchips,” Biomed. Opt. Express 6(8), 2991–2996 (2015).
[Crossref]

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Zaltron, A.

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

Zhang, X.

Zhang, Y.

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

Appl. Phys. Lett. (3)

M. Jubera, I. Elvira, A. García-Cabañes, J. L. Bella, and M. Carrascosa, “Trapping and patterning of biological objects using photovoltaic tweezers,” Appl. Phys. Lett. 108(2), 023703 (2016).
[Crossref]

M. Esseling, A. Zaltron, C. Sada, and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate,” Appl. Phys. Lett. 103(6), 061115 (2013).
[Crossref]

L. Razzari, P. Minzioni, I. Cristiani, and V. Degiorgio, “Photorefractivity of Hafnium-doped congruent lithium–niobate crystals,” Appl. Phys. Lett. 86(13), 131914 (2005).
[Crossref]

Appl. Phys. Rev. (1)

M. Carrascosa, A. García-Cabañes, M. Jubera, J. B. Ramiro, and F. Agulló-López, “LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects,” Appl. Phys. Rev. 2(4), 040605 (2015).
[Crossref]

Biomed. Opt. Express (1)

Crystals (2)

A. García-Cabañes, A. Blázquez-Castro, L. Arizmendi, F. Agulló-López, and M. Carrascosa, “Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate,” Crystals 8(2), 65 (2018).
[Crossref]

M. Gazzetto, G. Nava, A. Zaltron, I. Cristiani, C. Sada, and P. Minzioni, “Numerical and Experimental Study of ptoelectronic Trapping on Iron-Doped Lithium iobate Substrate,” Crystals 6(10), 123 (2016).
[Crossref]

J. Comput. Phys. (1)

E. Olsson and G. Kreiss, “A conservative level set method for two phase flow,” J. Comput. Phys. 210(1), 225–246 (2005).
[Crossref]

J. Eur. Opt. Soc.-Rapid Publ. (1)

C. Arregui, B. Ramiro, A. Alcázar, A. Méndez, J. F. Muñoz-Martínez, and M. Carrascosa, “Comparative theoretical analysis between parallel and perpendicular geometries for 2D particle patterning in photovoltaic ferroelectric substrates,” J. Eur. Opt. Soc.-Rapid Publ. 10, 15026 (2015).
[Crossref]

Lab Chip (1)

T. Yang, P. Paiè, G. Nava, F. Bragheri, R. M. Vazquez, P. Minzioni, M. Veglione, M. D. Tano, C. Mondello, R. Osellame, and I. Cristiani, “An integrated optofluidic device for single-cell sorting driven by mechanical properties,” Lab Chip 15(5), 1262–1266 (2015).
[Crossref]

Langmuir (1)

S. Grilli, V. Vespini, and P. Ferraro, “Surface-Charge Lithography for Direct PDMS Micro-Patterning,” Langmuir 24(23), 13262–13265 (2008).
[Crossref]

Laser Photonics Rev. (1)

M. Esseling, A. Zaltron, W. Horn, and C. Denz, “Optofluidic droplet router,” Laser Photonics Rev. 9(1), 98–104 (2015).
[Crossref]

Nat. Nanotechnol. (1)

P. Ferraro, S. Coppola, S. Grilli, M. Paturzo, and V. Vespini, “Dispensing nano–pico droplets and liquid patterning by pyroelectro dynamic shooting,” Nat. Nanotechnol. 5(6), 429–435 (2010).
[Crossref]

Opt. Express (3)

Opt. Laser Eng. (1)

L. Miccio, V. Marchesano, M. Mugnano, S. Grilli, and P. Ferraro, “Light induced DEP for immobilizing and orienting Escherichia coli bacteria,” Opt. Laser Eng. 76, 34–39 (2016).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Rev. Appl. (2)

B. Fan, F. Li, L. Chen, L. Shi, W. Yan, Y. Zhang, S. Li, X. Wang, X. Wang, and H. Chen, “Photovoltaic Manipulation of Water Microdroplets on a Hydrophobic LiNbO3,” Phys. Rev. Appl. 7(6), 064010 (2017).
[Crossref]

J. F. Muñoz-Martínez, J. B. Ramiro, A. Alcázar, A. García-Cabañes, and M. Carrascosa, “Electrophoretic versus dielectrophoretic nanoparticle patterning using optoelectronic tweezers,” Phys. Rev. Appl. 7(6), 064027 (2017).
[Crossref]

Sci. Rep. (1)

L. Chen, S. Li, B. Fan, W. Yan, D. Wang, L. Shi, H. Chen, D. Ban, and S. Sun, “Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates,” Sci. Rep. 6(1), 29166 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Illumination with a Gaussian laser beam. (b) and (c) are the crystal orientations and the photovoltaic fields of c-cut and y-cut LN:Fe crystals.
Fig. 2.
Fig. 2. (a) Experimental setup and (b) sandwich structures for the all-optical microdroplet splitting. (c) Absorption spectrum of LN:Fe. The blue and yellow arrows in Fig. 2(a) denote the propagating directions of the 405 nm-laser and the background white light, respectively.
Fig. 3.
Fig. 3. Dynamic process of the all-optical microdroplet splitting in LN-based sandwich structures. (a) is in the single LN structure (Case 1). (b) is in anti-symmetrical LN structure (Case 2). (c) is a special microdroplet splitting process of Case 2 where the laser illumination is switch on and off alternately. The laser power (3.66 mW) and focused beam diameter (150 mm) were used in all cases.
Fig. 4.
Fig. 4. Simulated distribution of DEP forces in the gap of (a) the single and (b) anti-symmetrical LN sandwich structures.
Fig. 5.
Fig. 5. Simulated evolution of the dielectric microdroplet in the gap of (a) the single and (b) anti-symmetrical LN structures. The color scale represents the hydrostatic pressure.
Fig. 6.
Fig. 6. The intensity dependence of splitting time for microdroplets with a fixed size (84 μm).
Fig. 7.
Fig. 7. The dependences of (a) the splitting time and (b) the ratio Er/E0 on the microdroplet size (d and D) at the fixed illumination intensity of 2.07*105 W/m2. Note that the size parameter d (or D) is fixed to 17 (or 100) µm when the other parameter D (or d) is varied. The symbol star corresponds to the case of Fig. 2 (b).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = V
( ε 0 ε E ) = σ
F D E P = ( 1 / 2 ) ε 0 ( ε o i l ε a i r ) E 2 d v
E = E 0 [ 1 Exp ( t τ ) ]
τ = ϵ ϵ 0 e μ n = ϵ ϵ 0 γ e μ SI * [ F e 3 + ] [ F e 2 + ]
t ( I ) = K I with K = Ln ( 1 E r E 0 ) ϵ ϵ 0 γ [ F e 3 + ] e μ S [ F e 2 + ]

Metrics