Abstract

In order to achieve the cooperative standoff tracking of target in non-wide area by multiple unmanned aerial vehicles (UAVs) with installed optical cameras, this paper proposes the constrained interacting multiple model (CIMM) filter to estimate the target state, as well as the time optimal guidance vector field (TOGVF) to optimize the UAV trajectory. Firstly, the geographical constraint equation deduced from the non-wide area is introduced into the traditional interacting multiple model, aiming to improve the estimation accuracy of the motion state of moving target measured from the optical cameras. According to the target motion information, the TOGVF method is then adopted to generate the velocity in the vertical plane guiding each UAV to the optimal observation height, as well as the velocity in the horizontal plane with which each UAV will converge to the standoff distance along the tangent of the limit cycle. On this basis, the speed of each UAV is adjusted in order to balance the phase difference and achieve the cooperation among multi-UAVs. The experimental results show that our method is effective in non-wide area. The estimation accuracy of target motion via CIMM increases by more than 30% compared to the single-model based filter, and the UAVs transfer to the limit cycle along the shortest path by TOGVF.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Camera calibration using a planar target with pure translation

Mao Yang, Xiaobo Chen, and Chengyi Yu
Appl. Opt. 58(31) 8362-8370 (2019)

Optimization-based non-cooperative spacecraft pose estimation using stereo cameras during proximity operations

Limin Zhang, Feng Zhu, Yingming Hao, and Wang Pan
Appl. Opt. 56(15) 4522-4531 (2017)

Extrinsic parameters calibration of multi-camera with non-overlapping fields of view using laser scanning

Zhenzhong Wei, Wei Zou, Guangjun Zhang, and Kai Zhao
Opt. Express 27(12) 16719-16737 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
    [Crossref]
  2. P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
    [Crossref]
  3. R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
    [Crossref]
  4. P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
    [Crossref]
  5. J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
    [Crossref]
  6. Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
    [Crossref]
  7. P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
    [Crossref]
  8. M. Kim and Y. Kim, “Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint,” Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013).
    [Crossref]
  9. P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
    [Crossref]
  10. S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
    [Crossref]
  11. Z. Tang and U. Ozguner, “Sensor fusion for target tracking maintenance with multiple UAVs based on Bayesian filtering method and hospitability map,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2003.
  12. Z. M. Kassas and U. Ozguner, “A nonlinear filter coupled with hospitability and synthetic inclination maps for in-surveillance and out-of-surveillance tracking,” IEEE Trans. Syst., Man, Cybern. C 40(1), 87–97 (2010).
    [Crossref]
  13. M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,” IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006).
    [Crossref]
  14. D. Strelle, “Road map assisted ground target tracking,” in Proceedings of the 11th International Conference on Information Fusion, Cologne, Germany, Jun. 30-Jul. 3 2008.
  15. J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
    [Crossref]
  16. M. Zhang, S. Knedik, and O. Loffeld, “An adaptive road-constrained IMM estimator for ground target tracking in GSM networks,” in Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, Jul. 2007.
  17. M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic constraints,” IEEE Trans. Autom. Control 35(3), 324–326 (1990).
    [Crossref]
  18. Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software, (John Wiley and Sons Inc., 2001).
  19. S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
    [Crossref]
  20. G. W. Ng, C. H. Tan, and T. P. Ng, “Tracking ground targets using state vector fusion,” in 7th International Conference on Information Fusion, (IEEE, 2005), pp. 297–302.
  21. I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
    [Crossref]
  22. N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
    [Crossref]
  23. D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
    [Crossref]
  24. E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
    [Crossref]
  25. H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
    [Crossref]
  26. T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
    [Crossref]
  27. H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).
  28. H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
    [Crossref]
  29. H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
    [Crossref]
  30. H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
    [Crossref]
  31. S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
    [Crossref]
  32. R. Wise and R. Rysdyk, “UAV coordination for autonomous target tracking,” in AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA, 2006), paper 2006–6453.
  33. J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.
  34. S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observable Markov decision process,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013).
    [Crossref]
  35. D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002).
    [Crossref]
  36. S. Qi and P. Yao, “Persistent Tracking of Maneuvering Target Using IMM Filter and DMPC by Initialization-Guided Game Approach,” IEEE Systems J., doc. ID 8627925 (posted 28 January 2019, in press).
  37. L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced circular formation: Multiple UAVs tracking a ground vehicle,” in American Control Conference (ACC, 2013), pp. 5386–5391.

2019 (3)

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
[Crossref]

P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
[Crossref]

2017 (5)

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
[Crossref]

I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
[Crossref]

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
[Crossref]

2015 (3)

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
[Crossref]

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

2014 (1)

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

2013 (6)

S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
[Crossref]

S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observable Markov decision process,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
[Crossref]

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

M. Kim and Y. Kim, “Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint,” Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013).
[Crossref]

S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
[Crossref]

2012 (1)

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

2010 (1)

Z. M. Kassas and U. Ozguner, “A nonlinear filter coupled with hospitability and synthetic inclination maps for in-surveillance and out-of-surveillance tracking,” IEEE Trans. Syst., Man, Cybern. C 40(1), 87–97 (2010).
[Crossref]

2009 (2)

T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).

2008 (2)

D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
[Crossref]

E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
[Crossref]

2006 (1)

M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,” IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006).
[Crossref]

2003 (1)

J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
[Crossref]

2002 (1)

D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002).
[Crossref]

1990 (1)

M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic constraints,” IEEE Trans. Autom. Control 35(3), 324–326 (1990).
[Crossref]

Agate, C. S.

H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).

Akella, M. R.

T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
[Crossref]

Bar-Shalom, Y.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software, (John Wiley and Sons Inc., 2001).

Blackburn, L.

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Cai, K. Y.

Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
[Crossref]

Cai, Y.

P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
[Crossref]

Chang, K. C.

H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).

Chen, H. D.

H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).

Cheung, Y. M.

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

Chia, T. L.

D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002).
[Crossref]

Chong, E. K. P.

S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observable Markov decision process,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013).
[Crossref]

Corredera, J. R. C.

J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
[Crossref]

Franke, K.

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Frew, E. W.

D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
[Crossref]

E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
[Crossref]

He, Z.

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

Hedengren, J.

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Herrero, J. G.

J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
[Crossref]

Hovakimyan, N.

L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced circular formation: Multiple UAVs tracking a ground vehicle,” in American Control Conference (ACC, 2013), pp. 5386–5391.

Huang, Y.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Hwang, I.

I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
[Crossref]

Ji, H.

P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
[Crossref]

Jiang, J.

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Jin, R.

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Kassas, Z. M.

Z. M. Kassas and U. Ozguner, “A nonlinear filter coupled with hospitability and synthetic inclination maps for in-surveillance and out-of-surveillance tracking,” IEEE Trans. Syst., Man, Cybern. C 40(1), 87–97 (2010).
[Crossref]

Kim, M.

M. Kim and Y. Kim, “Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint,” Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013).
[Crossref]

Kim, S.

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
[Crossref]

Kim, Y.

M. Kim and Y. Kim, “Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint,” Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013).
[Crossref]

S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
[Crossref]

Kirubarajan, T.

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software, (John Wiley and Sons Inc., 2001).

Knedik, S.

M. Zhang, S. Knedik, and O. Loffeld, “An adaptive road-constrained IMM estimator for ground target tracking in GSM networks,” in Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, Jul. 2007.

Koch, W.

M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,” IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006).
[Crossref]

Kopyt, A.

J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.

Lawrence, D. A.

E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
[Crossref]

D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
[Crossref]

Lee, S.

I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
[Crossref]

Li, N.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Li, X. R.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software, (John Wiley and Sons Inc., 2001).

Lin, D.

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Loffeld, O.

M. Zhang, S. Knedik, and O. Loffeld, “An adaptive road-constrained IMM estimator for ground target tracking in GSM networks,” in Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, Jul. 2007.

Ma, L.

L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced circular formation: Multiple UAVs tracking a ground vehicle,” in American Control Conference (ACC, 2013), pp. 5386–5391.

Malecki, T.

J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.

Martin, R.

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Mcdonald, M.

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

Mears, M. J.

T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
[Crossref]

Morris, S.

E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
[Crossref]

Nadarajah, N.

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

Narkiewicz, J.

J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.

Ng, G. W.

G. W. Ng, C. H. Tan, and T. P. Ng, “Tracking ground targets using state vector fusion,” in 7th International Conference on Information Fusion, (IEEE, 2005), pp. 297–302.

Ng, T. P.

G. W. Ng, C. H. Tan, and T. P. Ng, “Tracking ground targets using state vector fusion,” in 7th International Conference on Information Fusion, (IEEE, 2005), pp. 297–302.

Oh, H.

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
[Crossref]

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

Ozguner, U.

Z. M. Kassas and U. Ozguner, “A nonlinear filter coupled with hospitability and synthetic inclination maps for in-surveillance and out-of-surveillance tracking,” IEEE Trans. Syst., Man, Cybern. C 40(1), 87–97 (2010).
[Crossref]

Z. Tang and U. Ozguner, “Sensor fusion for target tracking maintenance with multiple UAVs based on Bayesian filtering method and hospitability map,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2003.

Park, S.

S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
[Crossref]

Pisano, W. J.

D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
[Crossref]

Pollini, L.

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

Portas, J. A. B.

J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
[Crossref]

Pulsipher, J.

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Qi, S.

S. Qi and P. Yao, “Persistent Tracking of Maneuvering Target Using IMM Filter and DMPC by Initialization-Guided Game Approach,” IEEE Systems J., doc. ID 8627925 (posted 28 January 2019, in press).

Qi, Y.

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Quan, Q.

Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
[Crossref]

Rabbath, C. A.

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

Radziszewski, P.

J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.

Ragi, S.

S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observable Markov decision process,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013).
[Crossref]

Ren, P.

P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
[Crossref]

Rysdyk, R.

R. Wise and R. Rysdyk, “UAV coordination for autonomous target tracking,” in AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA, 2006), paper 2006–6453.

Seah, C. E.

I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
[Crossref]

Shin, H. S.

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

Simon, D.

D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002).
[Crossref]

Song, T.

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Speyer, J. L.

M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic constraints,” IEEE Trans. Autom. Control 35(3), 324–326 (1990).
[Crossref]

Strelle, D.

D. Strelle, “Road map assisted ground target tracking,” in Proceedings of the 11th International Conference on Information Fusion, Cologne, Germany, Jun. 30-Jul. 3 2008.

Su, Z. K.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
[Crossref]

Summers, T. H.

T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
[Crossref]

Tahk, M.

M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic constraints,” IEEE Trans. Autom. Control 35(3), 324–326 (1990).
[Crossref]

Tan, C. H.

G. W. Ng, C. H. Tan, and T. P. Ng, “Tracking ground targets using state vector fusion,” in 7th International Conference on Information Fusion, (IEEE, 2005), pp. 297–302.

Tang, Z.

Z. Tang and U. Ozguner, “Sensor fusion for target tracking maintenance with multiple UAVs based on Bayesian filtering method and hospitability map,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2003.

Tharmarasa, R.

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

Tsourdos, A.

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
[Crossref]

Turchi, D.

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

Ulmke, M.

M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,” IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006).
[Crossref]

Wang, H.

P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
[Crossref]

Wang, H. L.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
[Crossref]

White, B.

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

White, B. A.

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

Wise, R.

R. Wise and R. Rysdyk, “UAV coordination for autonomous target tracking,” in AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA, 2006), paper 2006–6453.

Wu, J. F.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Xie, Z.

P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
[Crossref]

Yao, P.

P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
[Crossref]

P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
[Crossref]

P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
[Crossref]

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
[Crossref]

S. Qi and P. Yao, “Persistent Tracking of Maneuvering Target Using IMM Filter and DMPC by Initialization-Guided Game Approach,” IEEE Systems J., doc. ID 8627925 (posted 28 January 2019, in press).

Yi, S.

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

Yoon, S.

S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
[Crossref]

You, X.

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

Yu, Y.

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Zhang, M.

M. Zhang, S. Knedik, and O. Loffeld, “An adaptive road-constrained IMM estimator for ground target tracking in GSM networks,” in Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, Jul. 2007.

Zhao, Z. Y.

Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
[Crossref]

Zhu, Q.

P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
[Crossref]

Aerosp. Sci. Technol. (3)

P. Yao, Y. Cai, and Q. Zhu, “Time-optimal trajectory generation for aerial coverage of urban building,” Aerosp. Sci. Technol. 84, 387–398 (2019).
[Crossref]

J. F. Wu, H. L. Wang, N. Li, P. Yao, Y. Huang, Z. K. Su, and Y. Yu, “Distributed trajectory optimization for multiple solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm,” Aerosp. Sci. Technol. 70, 497–510 (2017).
[Crossref]

Z. Y. Zhao, Q. Quan, and K. Y. Cai, “A health evaluation method of multicopters modeled by Stochastic Hybrid System,” Aerosp. Sci. Technol. 68, 149–162 (2017).
[Crossref]

Chin. J. Aeronaut. (1)

P. Yao, H. L. Wang, and Z. K. Su, “UAV feasible path planning based on disturbed fluid and trajectory propagation,” Chin. J. Aeronaut. 28(4), 1163–1177 (2015).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (9)

S. Yoon, S. Park, and Y. Kim, “Circular motion guidance law for coordinated standoff tracking of a moving target,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2440–2462 (2013).
[Crossref]

M. Ulmke and W. Koch, “Road-map assisted ground moving target tracking,” IEEE Trans. Aerosp. Electron. Syst. 42(4), 1264–1274 (2006).
[Crossref]

J. G. Herrero, J. A. B. Portas, and J. R. C. Corredera, “Use of map information for tracking targets on airport surface,” IEEE Trans. Aerosp. Electron. Syst. 39(2), 675–693 (2003).
[Crossref]

N. Nadarajah, R. Tharmarasa, M. Mcdonald, and T. Kirubarajan, “IMM Forward Filtering and Backward Smoothing for Maneuvering Target Tracking,” IEEE Trans. Aerosp. Electron. Syst. 48(3), 2673–2678 (2012).
[Crossref]

H. Oh, S. Kim, H. S. Shin, and A. Tsourdos, “Coordinated standoff tracking of moving target groups using multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 51(2), 1501–1514 (2015).
[Crossref]

H. Oh, D. Turchi, S. Kim, A. Tsourdos, L. Pollini, and B. White, “Coordinated Standoff Tracking Using Path Shaping for Multiple UAVs,” IEEE Trans. Aerosp. Electron. Syst. 50(1), 348–363 (2014).
[Crossref]

S. Ragi and E. K. P. Chong, “UAV path planning in a dynamic environment via partially observable Markov decision process,” IEEE Trans. Aerosp. Electron. Syst. 49(4), 2397–2412 (2013).
[Crossref]

D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE Trans. Aerosp. Electron. Syst. 38(1), 128–136 (2002).
[Crossref]

H. D. Chen, K. C. Chang, and C. S. Agate, “UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance,” IEEE Trans. Aerosp. Electron. Syst. 49(2), 840–856 (2013).
[Crossref]

IEEE Trans. Autom. Control (2)

I. Hwang, C. E. Seah, and S. Lee, “A Study on Stability of the Interacting Multiple Model Algorithm,” IEEE Trans. Autom. Control 62(2), 901–906 (2017).
[Crossref]

M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic constraints,” IEEE Trans. Autom. Control 35(3), 324–326 (1990).
[Crossref]

IEEE Trans. Contr. Syst. Technol. (1)

P. Yao, Z. Xie, and P. Ren, “Optimal UAV route planning for coverage search of stationary target in river,” IEEE Trans. Contr. Syst. Technol. 27(2), 822–829 (2019).
[Crossref]

IEEE Trans. Syst., Man, Cybern. C (1)

Z. M. Kassas and U. Ozguner, “A nonlinear filter coupled with hospitability and synthetic inclination maps for in-surveillance and out-of-surveillance tracking,” IEEE Trans. Syst., Man, Cybern. C 40(1), 87–97 (2010).
[Crossref]

Int. J. Aeronaut. Space Sci. (1)

M. Kim and Y. Kim, “Multiple UAVs nonlinear guidance laws for stationary target observation with waypoint incidence angle constraint,” Int. J. Aeronaut. Space Sci. 14(1), 67–74 (2013).
[Crossref]

J Intell Robot Syst (1)

H. Oh, S. Kim, H. S. Shin, B. A. White, A. Tsourdos, and C. A. Rabbath, “Rendezvous and standoff target tracking guidance using differential geometry,” J Intell Robot Syst 69(1–4), 389–405 (2013).
[Crossref]

J. Guid. Control. Dynam. (3)

D. A. Lawrence, E. W. Frew, and W. J. Pisano, “Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control,” J. Guid. Control. Dynam. 31(5), 1220–1229 (2008).
[Crossref]

E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated Standoff Tracking of Moving Targets Using Lyapunov Guidance Vector Fields,” J. Guid. Control. Dynam. 31(2), 290–306 (2008).
[Crossref]

S. Kim, H. Oh, and A. Tsourdos, “Nonlinear Model Predictive Coordinated Standoff Tracking of a Moving Ground Vehicle,” J. Guid. Control. Dynam. 36(2), 557–566 (2013).
[Crossref]

Journal of Guidance, Control, and Dynamics (1)

T. H. Summers, M. R. Akella, and M. J. Mears, “Coordinated standoff tracking of moving targets: Control laws and information architectures,” Journal of Guidance, Control, and Dynamics 32(1), 56–69 (2009).
[Crossref]

Nonlinear Dyn. (1)

P. Yao, H. Wang, and H. Ji, “Gaussian Mixture Model and Receding Horizon Control for Multiple UAV Search in Complex Environment,” Nonlinear Dyn. 88(2), 903–919 (2017).
[Crossref]

Proc. SPIE (1)

H. D. Chen, K. C. Chang, and C. S. Agate, “A Dynamic Path Planning Algorithm for UAV Tracking,” Proc. SPIE 7336, 73360B (2009).

Remote Sens. (1)

R. Martin, L. Blackburn, J. Pulsipher, K. Franke, and J. Hedengren, “Potential benefits of combining anomaly detection with view planning for UAV infrastructure modeling,” Remote Sens. 9(5), 434 (2017).
[Crossref]

Sensors (1)

R. Jin, J. Jiang, Y. Qi, D. Lin, and T. Song, “Drone Detection and Pose Estimation Using Relational Graph Networks,” Sensors 19(6), 1479 (2019).
[Crossref]

Signal Processing (1)

S. Yi, Z. He, X. You, and Y. M. Cheung, “Single object tracking via robust combination of particle filter and sparse representation,” Signal Processing 110, 178–187 (2015).
[Crossref]

Other (9)

G. W. Ng, C. H. Tan, and T. P. Ng, “Tracking ground targets using state vector fusion,” in 7th International Conference on Information Fusion, (IEEE, 2005), pp. 297–302.

R. Wise and R. Rysdyk, “UAV coordination for autonomous target tracking,” in AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA, 2006), paper 2006–6453.

J. Narkiewicz, A. Kopyt, T. Małecki, and P. Radziszewski, “Optimal selection of UAV for ground target tracking,” in AIAA Aviation(AIAA, 2015), paper 2015–2330.

S. Qi and P. Yao, “Persistent Tracking of Maneuvering Target Using IMM Filter and DMPC by Initialization-Guided Game Approach,” IEEE Systems J., doc. ID 8627925 (posted 28 January 2019, in press).

L. Ma and N. Hovakimyan, “Cooperative target tracking in balanced circular formation: Multiple UAVs tracking a ground vehicle,” in American Control Conference (ACC, 2013), pp. 5386–5391.

Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation: Theory, Algorithm and Software, (John Wiley and Sons Inc., 2001).

M. Zhang, S. Knedik, and O. Loffeld, “An adaptive road-constrained IMM estimator for ground target tracking in GSM networks,” in Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, Jul. 2007.

D. Strelle, “Road map assisted ground target tracking,” in Proceedings of the 11th International Conference on Information Fusion, Cologne, Germany, Jun. 30-Jul. 3 2008.

Z. Tang and U. Ozguner, “Sensor fusion for target tracking maintenance with multiple UAVs based on Bayesian filtering method and hospitability map,” in Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1. Kinematics models of target and UAV in the coordinate systems.
Fig. 2.
Fig. 2. CIMM filter for multi-UAVs.
Fig. 3.
Fig. 3. UAV motion in the horizontal plane.
Fig. 4.
Fig. 4. Projection of three UAVs tracking a target in the horizontal plane.
Fig. 5.
Fig. 5. The flow chart of the whole research.
Fig. 6.
Fig. 6. Position estimation.
Fig. 7.
Fig. 7. Velocity estimation.
Fig. 8.
Fig. 8. Tracking a static target by one UAV.
Fig. 9.
Fig. 9. Comparison of two methods.
Fig. 10.
Fig. 10. Tracking a dynamic target by one UAV.
Fig. 11.
Fig. 11. Tracking path in $x - y$ plane.
Fig. 12.
Fig. 12. Tracking path in $s - z$ plane.
Fig. 13.
Fig. 13. Multi-UAVs tracking a dynamic target.
Fig. 14.
Fig. 14. Tracking paths in $x - y$ plane.
Fig. 15.
Fig. 15. Tracking paths in $s - z$ plane.
Fig. 16.
Fig. 16. Phase difference between UAVs.
Fig. 17.
Fig. 17. Horizontal speed of UAVs.

Tables (2)

Tables Icon

Table 1. Simulation parameters.

Tables Icon

Table 2. Comparison of mean estimation errors from 100 tests.

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

{ x ˙ = v 0 cos φ y ˙ = v 0 sin φ z ˙ = v z φ ˙ = ω v ˙ z = a z
{ v min v 0 v max ω < ω max v z d , max v z v z c , max z min z z max a z d , max a z a z c , max
S p ( x p , y p ) = { ( x p x ) 2 + ( y p y ) 2 R r }
v r = v v t = ( v x v t x v y v t y v z v t z )
{ x k = f ( x k 1 ) + w k z k = h k x k + v k
h k = [ 1 0 0 0 0 0 0 0 0 1 0 0 ]
r i ( x t , y t ) = 0
r i ( x t , y t ) = tan θ x t y t + b = 0
r i ( x t , y t ) = ( x t x i , c ) 2 + ( y t y i , c ) 2 ( 1 k i ) 2 = 0
z k r i = h r i ( x k r i ) + v k r i
z k a = h k a ( x k ) + v k a
x k | k 1 = F k x k 1 | k 1
P k | k 1 = F k P k 1 | k 1 F k T + Q k
K k = P k | k 1 H k T ( H k P k | k 1 H k T + R k a ) 1
x k | k = x k | k 1 + K k ( z k a h a ( x k | k 1 ) )
P k | k = ( I K k H k ) P k | k 1
μ k 1 | k 1 i , j = 1 t = 1 n p t j μ k 1 | k 1 t p i j μ k 1 | k 1 i
x ¯ k 1 | k 1 j = i = 1 n μ k 1 | k 1 i , j x ^ k 1 | k 1 i
P ¯ k 1 | k 1 j = i = 1 n μ k 1 | k 1 i , j [ P k 1 | k 1 i + ( x ^ k 1 | k 1 i x ¯ k 1 | k 1 j ) ( x ^ k 1 | k 1 i x ¯ k 1 | k 1 j ) T ]
Λ k j = N { z ~ k j ; 0 , S k j } = 1 | 2 π S k j | exp ( 1 2 ( z ~ k j ) T ( S k j ) 1 z ~ k j )
μ k | k j = 1 c Λ k j i = 1 n p i j μ k 1 | k 1 i
x ^ k | k = j = 1 n μ k | k j x ^ k | k j
P k | k = j = 1 n μ k | k j [ P k | k j + ( x ^ k | k x ^ k | k j ) ( x ^ k | k x ^ k | k j ) T ]
x ^ k t = x ^ k | k t + P k | k t ( P k | k t + P k | k q ) 1 ( x ^ k | k q x ^ k | k t )
P k t = P k | k t P k | k t ( P k | k t + P k | k q ) 1 ( P k | k t ) T
x tan = R 2 r 2 ( x x t ) R r 2 ( y y t ) r 2 R 2 + x t y tan = R 2 r 2 ( y y t ) ± R r 2 ( x x t ) r 2 R 2 + y t
x 0 = x + r d x ˙ x ˙ 2 + y ˙ 2 A r min y ˙ x ˙ 2 + y ˙ 2 y 0 = y + r d y ˙ x ˙ 2 + y ˙ 2 + A r min x ˙ x ˙ 2 + y ˙ 2
v d = [ v x d v y d ] = v 0 ( x x tan ) 2 ( y y tan ) 2 [ x x tan y y tan ]
φ d = arctan ( v y d v x d ) = y y tan x x tan
z 0 = H + v z d , max 2 2 a z d , m a x
v z d = { v z d , max z z 0 2 a z d , max ( z H ) z < z 0
v r = [ x ˙ r y ˙ r z ˙ r ] = [ α v x d α v y d v z d ]
v d = [ x ˙ d y ˙ d z ˙ d ] = [ α v x d α v y d v z d ] + [ x ˙ t y ˙ t 0 ]
( v x d 2 + v y d 2 ) α 2 + ( v x d x ˙ t + v y d y ˙ t ) 2 α + x ˙ t 2 + y ˙ t 2 v 0 2 = 0
r 1 = x r 1 2 + y r 1 2 = ( x 1 x t ) 2 + ( y 1 y t ) 2
V q = ( θ 2 θ 1 θ d 1 ) 2 + ( θ 3 θ 2 θ d 2 ) 2
d V q / d t = 2 ( θ 2 θ 1 θ d 1 ) ( θ ˙ 2 θ ˙ 1 ) + 2 ( θ 3 θ 2 θ d 2 ) ( θ ˙ 3 θ ˙ 2 )
θ ˙ 1 = k 2 ( θ 2 θ 1 θ d 1 ) + v 0 R θ ˙ 2 = v 0 R θ ˙ 3 = k 3 ( θ 3 θ 2 θ d 2 ) + v 0 R
d V q / d t = 2 k 2 ( θ 2 θ 1 θ d 1 ) 2 2 k 3 ( θ 3 θ 2 θ d 2 ) 2 0
v 1 = k 2 R ( θ 2 θ 1 θ d 1 ) + v 0 v 2 = v 0 v 3 = k 3 R ( θ 3 θ 2 θ d 2 ) + v 0
p = [ 0.98 0.01 0.01 0.01 0.98 0.01 0.01 0.01 0.98 ]

Metrics