Abstract

The absorption region of a water-based absorber was expanded by introducing tetramethylurea (TMU) into the inclusion, whose dielectric properties are tunable through the concentration of TMU. The dielectric spectroscopy of a TMU/water mixture was deconstructed using a Debye model. We designed a four-layer ultra-broadband microwave absorber with a supernatant micro-structure. Simulation and experiment results indicate that the absorber can achieve 90% perfect absorption, covering a broad frequency range of 4–40 GHz. The concentration dependence of the absorber was also studied experimentally and numerically. The concentration control provides a more practical and large frequency-region modulation of perfect absorption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cylindrical-water-resonator-based ultra-broadband microwave absorber

Jian Ren and Jia Yuan Yin
Opt. Mater. Express 8(8) 2060-2071 (2018)

Water metamaterial for ultra-broadband and wide-angle absorption

Jianwen Xie, Weiren Zhu, Ivan D. Rukhlenko, Fajun Xiao, Chong He, Junping Geng, Xianling Liang, Ronghong Jin, and Malin Premaratne
Opt. Express 26(4) 5052-5059 (2018)

Dual broadband metamaterial absorber

Young Ju Kim, Young Joon Yoo, Ki Won Kim, Joo Yull Rhee, Yong Hwan Kim, and YoungPak Lee
Opt. Express 23(4) 3861-3868 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
    [Crossref] [PubMed]
  2. W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
    [Crossref]
  3. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
    [Crossref] [PubMed]
  4. K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
    [Crossref] [PubMed]
  5. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  6. J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  7. D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
    [Crossref]
  8. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  9. P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
    [Crossref]
  10. S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
    [Crossref]
  11. P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
    [Crossref]
  12. Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
    [Crossref]
  13. F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
    [Crossref]
  14. Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).
  15. A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
    [Crossref] [PubMed]
  16. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
    [Crossref] [PubMed]
  17. R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
    [Crossref] [PubMed]
  18. R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
    [Crossref]
  19. W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
    [Crossref] [PubMed]
  20. Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
    [Crossref]
  21. Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
    [Crossref] [PubMed]
  22. J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
    [Crossref] [PubMed]
  23. M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
    [Crossref]
  24. J. Ren and J. Y. Yin, “Cylinder-water-resonator-based ultra-broadband microwave absorber,” Opt. Mater. Express 8(8), 2060–2071 (2018).
    [Crossref]
  25. X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
    [Crossref]
  26. J. Xie, W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, R. Jin, and M. Premaratne, “Water metamaterial for ultra-broadband and wide-angle absorption,” Opt. Express 26(4), 5052–5059 (2018).
    [Crossref] [PubMed]
  27. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  28. Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
    [Crossref] [PubMed]
  29. R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
    [Crossref]
  30. R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
    [Crossref]
  31. K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
    [Crossref] [PubMed]
  32. K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
    [Crossref] [PubMed]
  33. M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
    [Crossref]
  34. Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
    [Crossref] [PubMed]
  35. Y. L. A. Rezus and H. J. Bakker, “Strong slowing down of water reorientation in mixtures of water and tetramethylurea,” J. Phys. Chem. A 112(11), 2355–2361 (2008).
    [Crossref] [PubMed]
  36. K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
    [Crossref] [PubMed]
  37. D. V. Blackham and R. D. Pollard, “An improved technique for permittivity measurements using a coaxial probe,” IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997).
    [Crossref]
  38. J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
    [Crossref] [PubMed]
  39. H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
    [Crossref]

2019 (3)

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
[Crossref]

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

2018 (4)

2017 (10)

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

W. Zhu, I. D. Rukhlenko, F. Xiao, C. He, J. Geng, X. Liang, M. Premaratne, and R. Jin, “Multiband coherent perfect absorption in a water-based metasurface,” Opt. Express 25(14), 15737–15745 (2017).
[Crossref] [PubMed]

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

2016 (3)

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

2015 (3)

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

2014 (1)

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

2012 (2)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (2)

C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, “Investigation on the role of the dielectric loss in metamaterial absorber,” Opt. Express 18(7), 6598–6603 (2010).
[Crossref] [PubMed]

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

2009 (2)

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34(22), 3541–3543 (2009).
[Crossref] [PubMed]

2008 (1)

Y. L. A. Rezus and H. J. Bakker, “Strong slowing down of water reorientation in mixtures of water and tetramethylurea,” J. Phys. Chem. A 112(11), 2355–2361 (2008).
[Crossref] [PubMed]

1999 (3)

R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
[Crossref]

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
[Crossref]

1997 (1)

D. V. Blackham and R. D. Pollard, “An improved technique for permittivity measurements using a coaxial probe,” IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997).
[Crossref]

1996 (1)

M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
[Crossref]

1991 (1)

H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Adachi, A.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

Ajito, K.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

Andryieuski, A.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Bai, S. A.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Bakker, H. J.

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

Y. L. A. Rezus and H. J. Bakker, “Strong slowing down of water reorientation in mixtures of water and tetramethylurea,” J. Phys. Chem. A 112(11), 2355–2361 (2008).
[Crossref] [PubMed]

Barthel, J.

R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
[Crossref]

Belov, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Bhattacharyya, N. S.

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

Bhattacharyya, S.

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
[Crossref]

Biyikli, N.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Blackham, D. V.

D. V. Blackham and R. D. Pollard, “An improved technique for permittivity measurements using a coaxial probe,” IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997).
[Crossref]

Bong, J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Bonn, M.

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

Bourouina, T.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Buchner, R.

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
[Crossref]

R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
[Crossref]

Cai, H.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Capewell, S. G.

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

Chen, J.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Chen, K.

Chen, X.

Chen, Y.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Chong, P. H. J.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Cui, T. J.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cumming, D. R. S.

Das, S.

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
[Crossref]

De Baerdemaeker, J.

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Deng, Y. Q.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Ding, F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Du, K. K.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Feng, Q.

Feng, Y.

Gao, J.

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Geng, J.

Ghosh, S.

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

Ghosh, S. K.

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
[Crossref]

Gogoi, D. J.

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

Gok, A.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Gong, J. H.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Gorgulu, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Grant, J.

Gu, J.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Gu, Y. D.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Guan, Y. J.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Han, J.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Hao, Y. L.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

He, C.

He, M.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

He, Q.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

He, X. D.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Hefter, G.

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

Hefter, G. T.

R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
[Crossref]

Hu, C.

Huang, X. J.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Hufford, G. A.

H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Hunger, J.

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

Jain, P. K.

P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
[Crossref]

Jiang, T.

Jin, R.

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ju, S.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Ju Kim, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Kaatze, M. K.

M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
[Crossref]

Kadlec, C.

Kadlec, F.

Kapitanova, P.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Kettler, M.

M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
[Crossref]

Khalid, A.

Kim, K. W.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Kondo, N.

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Kumar, P.

P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
[Crossref]

Kužel, P.

Kuznetsova, S. M.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Lakhtakia, A.

P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
[Crossref]

Lanagan, M.

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

Lavrinenko, A. V.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Lee, Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Leprince-Wang, Y.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Li, Q.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Li, X.

Liang, Q. X.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Liang, X.

Liebe, H. J.

H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Lim, T.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Lin, H.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Liu, A. Q.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Liu, H.

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

Liu, L.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Liu, S. M.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Liu, Z.

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

Lo, G. Q.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Lu, Z.

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

Luo, X.

Ma, H.

Ma, Y.

Ma, Y. H.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Macdonald, D. D.

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

Manabe, T. A.

H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

Manias, E.

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

May, P. M.

R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
[Crossref]

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

Mounaix, P.

Munaga, P.

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

Nakamura, M.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

Nemec, H.

Odit, M.

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

Ogawa, Y.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Okyay, A. K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Ouyang, C.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Pan, M. Y.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Pang, Y.

Pang, Y. Q.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Park, S. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Pollard, R. D.

D. V. Blackham and R. D. Pollard, “An improved technique for permittivity measurements using a coaxial probe,” IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997).
[Crossref]

Pottel, R.

M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
[Crossref]

Premaratne, M.

Pu, M.

Qiu, M.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Qu, S.

Qu, S. B.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Qu, Y. R.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Ren, J.

Rezus, Y. L. A.

Y. L. A. Rezus and H. J. Bakker, “Strong slowing down of water reorientation in mixtures of water and tetramethylurea,” J. Phys. Chem. A 112(11), 2355–2361 (2008).
[Crossref] [PubMed]

Rhee, J. Y.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Rukhlenko, I. D.

Saha, S.

Shen, Y.

Shen, Z. X.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Shen, Z. Y.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Shiraga, K.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Song, Q. H.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Song, X.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Srivastava, K. V.

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

Stauber, J.

R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
[Crossref]

Sun, W. J.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Suzuki, T.

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Tajima, T.

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

Teng, J. H.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Tian, J. Y.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Tian, Z.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Tielrooij, K. J.

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

Topalli, K.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Tsai, D. P.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Wang, B.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Wang, C.

Wang, J.

Wang, J. F.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Wang, W.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Wang, X.

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

Wei, S.

Wu, P. C.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Wu, Q. Y. S.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Xiao, F.

Xie, J.

Xu, Z.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Yadav, V. S.

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
[Crossref]

Yahiaoui, R.

Yang, E.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Yang, F. L.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Yang, H.

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

Yang, H. L.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Yang, Z. C.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Ye, H.

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

Yilmaz, M.

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

Yin, J. Y.

Yoo, Y. J.

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Yu, Z.

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, J.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Zhang, W.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Zhang, X.

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

Zhang, X. P.

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Zhao, J.

J. Zhao, S. Wei, C. Wang, K. Chen, B. Zhu, T. Jiang, and Y. Feng, “Broadband microwave absorption utilizing water-based metamaterial structures,” Opt. Express 26(7), 8522–8531 (2018).
[Crossref] [PubMed]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhou, H. F.

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Zhou, L.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhou, X. Y.

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

Zhu, B.

Zhu, J. F.

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, W.

Zhu, W. M.

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

Zhukovsky, S. V.

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater (1)

Q. H. Song, W. Zhang, P. C. Wu, W. M. Zhu, Z. X. Shen, P. H. J. Chong, Q. X. Liang, Z. C. Yang, Y. L. Hao, H. Cai, H. F. Zhou, Y. D. Gu, G. Q. Lo, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Water-resonator-based metasurface: An ultrabroadband and near-unity absorption,” Adv. Opt. Mater. 5(8), 1601103 (2017).

APL Mater. (1)

Q. H. Song, W. M. Zhu, P. C. Wu, W. Zhang, Q. Y. S. Wu, J. H. Teng, Z. X. Shen, P. H. J. Chong, Z. C. Yang, D. P. Tsai, T. Bourouina, Y. Leprince-Wang, and A. Q. Liu, “Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle,” APL Mater. 5(6), 066103 (2017).
[Crossref]

Appl. Phys. Lett. (6)

W. Wang, Y. R. Qu, K. K. Du, S. A. Bai, J. Y. Tian, M. Y. Pan, H. Ye, M. Qiu, and Q. Li, ““Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε” metals,” Appl. Phys. Lett. 110(10), 101101 (2017).
[Crossref]

J. F. Zhu, Z. F. Ma, W. J. Sun, F. Ding, Q. He, L. Zhou, and Y. H. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Y. Q. Pang, J. F. Wang, Q. Cheng, X. Song, X. Y. Zhou, Z. Xu, T. J. Cui, and S. B. Qu, “Thermally tunable water-substrate broadband metamaterial absorber,” Appl. Phys. Lett. 110(10), 104103 (2017).
[Crossref]

M. Odit, P. Kapitanova, A. Andryieuski, P. Belov, and A. V. Lavrinenko, “Experimental demonstration of water based tunable metasurface,” Appl. Phys. Lett. 109(1), 011901 (2016).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

F. L. Yang, J. H. Gong, E. Yang, Y. J. Guan, X. D. He, S. M. Liu, X. P. Zhang, and Y. Q. Deng, “Ultrabroadband metamaterial absorbers based on ionic liquids,” Appl. Phys., A Mater. Sci. Process. 125(2), 149 (2019).
[Crossref]

Carbohydr. Res. (1)

K. Shiraga, T. Suzuki, N. Kondo, J. De Baerdemaeker, and Y. Ogawa, “Quantitative characterization of hydration state and destructuring effect of monosaccharides and disaccharides on water hydrogen bond network,” Carbohydr. Res. 406, 46–54 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

R. Buchner, J. Barthel, and J. Stauber, “The dielectric relaxation of water between 0°C and 35°C,” Chem. Phys. Lett. 306(1–2), 57–63 (1999).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

D. V. Blackham and R. D. Pollard, “An improved technique for permittivity measurements using a coaxial probe,” IEEE Trans. Instrum. Meas. 46(5), 1093–1099 (1997).
[Crossref]

Int. J. Infrared Millim. Waves (1)

H. J. Liebe, G. A. Hufford, and T. A. Manabe, “A model for the complex permittivity of water at frequencies below 1 THz,” Int. J. Infrared Millim. Waves 12(7), 659–675 (1991).
[Crossref]

J. Am. Chem. Soc. (1)

K. J. Tielrooij, J. Hunger, R. Buchner, M. Bonn, and H. J. Bakker, “Influence of concentration and temperature on the dynamics of water in the hydrophobic hydration shell of tetramethylurea,” J. Am. Chem. Soc. 132(44), 15671–15678 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. J. Gogoi and N. S. Bhattacharyya, “Embedded dielectric water “atom” array for broadband microwave absorber based on Mie resonance,” J. Appl. Phys. 122(17), 175106 (2017).
[Crossref]

J. Chem. Phys. (1)

K. Shiraga, A. Adachi, M. Nakamura, T. Tajima, K. Ajito, and Y. Ogawa, “Characterization of the hydrogen-bond network of water around sucrose and trehalose: Microwave and terahertz spectroscopic study,” J. Chem. Phys. 146(10), 105102 (2017).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

P. Kumar, A. Lakhtakia, and P. K. Jain, “Graphene pixel-based polarization-insensitive metasurface for almost perfect and wideband terahertz absorption,” J. Opt. Soc. Am. B 36(8), 84–88 (2019).
[Crossref]

J. Phys. Chem. (1)

M. K. Kaatze, M. Kettler, and R. Pottel, “Dielectric relaxation spectrometry of mixtures of water with isopropoxy-and isobutoxyethanol. Comparison to unbranched poly (ethylene glycol) monoalkyl ethers,” J. Phys. Chem. 100(6), 2360–2366 (1996).
[Crossref]

J. Phys. Chem. A (3)

Z. Lu, E. Manias, D. D. Macdonald, and M. Lanagan, “Dielectric relaxation in dimethyl sulfoxide/water mixtures studied by microwave dielectric relaxation spectroscopy,” J. Phys. Chem. A 113(44), 12207–12214 (2009).
[Crossref] [PubMed]

Y. L. A. Rezus and H. J. Bakker, “Strong slowing down of water reorientation in mixtures of water and tetramethylurea,” J. Phys. Chem. A 112(11), 2355–2361 (2008).
[Crossref] [PubMed]

R. Buchner, G. T. Hefter, and P. M. May, “Dielectric relaxation of aqueous NaCl solutions,” J. Phys. Chem. A 103(1), 1–9 (1999).
[Crossref]

J. Phys. Chem. B (2)

R. Buchner, S. G. Capewell, G. Hefter, and P. M. May, “Ion-pair and solvent relaxation processes in aqueous Na2SO4 solutions,” J. Phys. Chem. B 103(7), 1185–1192 (1999).
[Crossref]

J. Zhang, L. Liu, Y. Chen, B. Wang, C. Ouyang, Z. Tian, J. Gu, X. Zhang, M. He, J. Han, and W. Zhang, “Water dynamics in the hydration shell of amphiphilic macromolecules,” J. Phys. Chem. B 123(13), 2971–2977 (2019).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

X. J. Huang, H. L. Yang, Z. Y. Shen, J. Chen, H. Lin, and Z. Yu, “Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime,” J. Phys. D Appl. Phys. 50(38), 385304 (2017).
[Crossref]

Microw. Opt. Technol. Lett. (1)

P. Munaga, S. Ghosh, S. Bhattacharyya, and K. V. Srivastava, “A Fractal based compact broadband polarization insensitive metamaterial absorber using lumped resistors,” Microw. Opt. Technol. Lett. 58(2), 343–347 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Opt. Mater. Express (1)

Sci. Rep. (4)

Y. J. Yoo, S. Ju, S. Y. Park, Y. Ju Kim, J. Bong, T. Lim, K. W. Kim, J. Y. Rhee, and Y. Lee, “Metamaterial absorber for electromagnetic waves in periodic water droplets,” Sci. Rep. 5(1), 14018–14025 (2015).
[Crossref] [PubMed]

Z. Liu, H. Liu, X. Wang, H. Yang, and J. Gao, “Large area and broadband ultra-black absorber using microstructured aluminum doped silicon films,” Sci. Rep. 7(2), 42750 (2017).
[Crossref] [PubMed]

K. Gorgulu, A. Gok, M. Yilmaz, K. Topalli, N. Bıyıklı, and A. K. Okyay, “All-silicon ultra-broadband infrared light absorbers,” Sci. Rep. 6(1), 38589 (2016).
[Crossref] [PubMed]

A. Andryieuski, S. M. Kuznetsova, S. V. Zhukovsky, Y. S. Kivshar, and A. V. Lavrinenko, “Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials,” Sci. Rep. 5(1), 13535 (2015).
[Crossref] [PubMed]

Other (1)

S. K. Ghosh, V. S. Yadav, S. Das, and S. Bhattacharyya, “Tunable graphene based metasurface for polarization-independent broadband absorption in lower mid infrared (MIR) range,” IEEE Trans. Electromagn. Compat. doi: (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Oblique view of decomposed ultra-broadband absorber structure and (b) a schematic diagram of unit cell.
Fig. 2
Fig. 2 The permittivity of a TMU/water mixture with different molar ratios of ω = 0, 0.01, 0.05, 0.09, 0.18, 0.36, ∞: (a) real and (b) imaginary parts. The decomposition of permittivity of a TMU solution with a molar concentration ratio of ω = 0.18: (c) real and (d) imaginary parts.
Fig. 3
Fig. 3 Absorptivity spectra of TMU meta-material absorber: (a) comparison of the simulated and experimental absorption. The inset shows a photograph of a 3D printed absorber composed of a 17 × 17 unit cell with the designed dimensions: (b) simulated results of the absorber with the absence of the upper micro-structure, middle cylinder resonator, and inclusion of pure TMU, respectively.
Fig. 4
Fig. 4 Power loss density of designed TMU absorber in x, y, and z directions at (a1–a3) 4.4, (b1–b3) 9.5, (c1–c3) 21, (d1–d3) 30.5, and (e1–e3) 38.2 GHz, and electric field distribution at (f) 4.4, (g) 9.5, (h) 21, (i) 30.5, and (j) 38.2 GHz.
Fig. 5
Fig. 5 The absorptivity of the designed absorber filled with different molar concentration ratios of a TMU/water mixture of ω = 0, 0.01, 0.05, 0.09, 0.18, 0.36, and ∞: (a) simulation and (b) experiment results.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε (ν)= S slow 1+i2πν τ slow + S bulk 1+i2πν τ bulk + ε ,

Metrics