Abstract

We report a transmittance controllable electrochromic color filter (TCECF) by incorporating new electrochromic leuco dyes and their optimized composition. Each primary color red (R), green (G), and blue (B) electrochromic filter has an excellent transmittance of more than 84% at 650 nm, 540 nm, 450 nm, and the color coordinates are controllable from white (0.332, 0.347) to deep-red (0.621, 0.344), deep-green (0.327, 0.646), and deep-blue (0.179, 0.085), respectively. Also, each TCECF has good coloration efficiencies of 188.7 cm2 C−1 (R), 189.3 cm2 C−1 (G), and 147.8 cm2 C−1 (B) with high optical density change. A full color producible electrochromic color filter (ECF) is designed and fabricated by integrating primary RGB color filters with a refractive index matching adhesive layer. The fabricated three-stack full color producible ECF enables high transmittance of about 61% for clear white light extraction, and it can produce various colors including RGB. This TCECF technology will be very useful for high light out-coupling electro-optical applications, such as smart lighting, smart window, and display.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient full-color display based on blue LED backlight and electrochromic light-valve coupled with front-emitting phosphors

Jeong Rok Oh, Hoo Keun Park, Ji Hye Oh, Taejoon Kouh, and Young Rag Do
Opt. Express 19(17) 16022-16031 (2011)

Next generation smart window display using transparent organic display and light blocking screen

Gyeong Woo Kim, Raju Lampande, Dong Cheol Choe, Ik Jang Ko, Jin Hwan Park, Ramchandra Pode, and Jang Hyuk Kwon
Opt. Express 26(7) 8493-8502 (2018)

Analysis of wide color gamut of green/red bilayered freestanding phosphor film-capped white LEDs for LCD backlight

Ji Hye Oh, Heejoon Kang, Minji Ko, and Young Rag Do
Opt. Express 23(15) A791-A804 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  2. D. B. Judd, Color in Business, Science and Industry (Wiley, 1952).
  3. W. J. B. Heffernan, L. P. Frater, and N. R. Watson, “LED replacement for fluorescent tube lighting,” in The Power Engineering Conference (AUPEC, 2007), pp. 1–6.
  4. J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
    [Crossref]
  5. R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
    [Crossref]
  6. K. Tsuda, “Colour filters for LCDs,” Displays 14(2), 115–124 (1993).
    [Crossref]
  7. C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
    [Crossref]
  8. I. Bita, A. Govil, and E. P. Gusev, Handbook of Visual Display Technology (Springer, 2012).
  9. H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
    [Crossref]
  10. B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18(2), 025027 (2008).
    [Crossref]
  11. H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
    [Crossref]
  12. L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
    [Crossref]
  13. N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
    [Crossref]
  14. S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
    [Crossref]
  15. W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
    [Crossref]
  16. Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
    [Crossref]
  17. G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
    [Crossref]
  18. C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
    [Crossref]
  19. C. Wang and K. M. C. Wong, “Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes,” Inorg. Chem. 52(23), 13432–13441 (2013).
    [Crossref]
  20. P. Hapiot and C. Lagrost, “Electrochemical reactivity in room-temperature ionic liquids,” Chem. Rev. 108(7), 2238–2264 (2008).
    [Crossref]
  21. L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
    [Crossref]
  22. C. Chiappe and D. Pieraccini, “Ionic liquids: solvent properties and organic reactivity,” J. Phys. Org. Chem. 18(4), 275–297 (2005).
    [Crossref]
  23. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
    [Crossref]
  24. R. J. Mortimer and T. S. Varley, “In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen,” Sol. Energy Mater. Sol. Cells 99, 213–220 (2012).
    [Crossref]
  25. R. J. Mortimer and T. S. Varley, “Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials,” Displays 32(1), 35–44 (2011).
    [Crossref]
  26. K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
    [Crossref]
  27. Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
    [Crossref]
  28. T. M. Aminabhavi and B. Gopalakrishna, “Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K,” J. Chem. Eng. Data 40(4), 856–861 (1995).
    [Crossref]
  29. M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
    [Crossref]
  30. W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
    [Crossref]
  31. I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
    [Crossref]
  32. V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
    [Crossref]
  33. Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
    [Crossref]
  34. E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
    [Crossref]
  35. H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
    [Crossref]
  36. N. H. Tennent and J. H. Townsend, “The significance of the refractive index of adhesives for glass repair,” Stud. Conserv. 29(sup1), 205–212 (1984).
    [Crossref]
  37. C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity,” Color Res. Appl. 17(2), 142–144 (1992).
    [Crossref]
  38. Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
    [Crossref]

2019 (1)

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

2018 (2)

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

2017 (2)

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

2016 (4)

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

2015 (1)

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

2014 (1)

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

2013 (1)

C. Wang and K. M. C. Wong, “Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes,” Inorg. Chem. 52(23), 13432–13441 (2013).
[Crossref]

2012 (1)

R. J. Mortimer and T. S. Varley, “In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen,” Sol. Energy Mater. Sol. Cells 99, 213–220 (2012).
[Crossref]

2011 (1)

R. J. Mortimer and T. S. Varley, “Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials,” Displays 32(1), 35–44 (2011).
[Crossref]

2010 (2)

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

2009 (2)

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

2008 (5)

P. Hapiot and C. Lagrost, “Electrochemical reactivity in room-temperature ionic liquids,” Chem. Rev. 108(7), 2238–2264 (2008).
[Crossref]

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18(2), 025027 (2008).
[Crossref]

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

2006 (1)

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

2005 (1)

C. Chiappe and D. Pieraccini, “Ionic liquids: solvent properties and organic reactivity,” J. Phys. Org. Chem. 18(4), 275–297 (2005).
[Crossref]

2004 (2)

J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
[Crossref]

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

2003 (1)

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

1999 (1)

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

1998 (1)

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

1995 (1)

T. M. Aminabhavi and B. Gopalakrishna, “Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K,” J. Chem. Eng. Data 40(4), 856–861 (1995).
[Crossref]

1993 (1)

K. Tsuda, “Colour filters for LCDs,” Displays 14(2), 115–124 (1993).
[Crossref]

1992 (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity,” Color Res. Appl. 17(2), 142–144 (1992).
[Crossref]

1984 (1)

N. H. Tennent and J. H. Townsend, “The significance of the refractive index of adhesives for glass repair,” Stud. Conserv. 29(sup1), 205–212 (1984).
[Crossref]

Aminabhavi, T. M.

T. M. Aminabhavi and B. Gopalakrishna, “Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K,” J. Chem. Eng. Data 40(4), 856–861 (1995).
[Crossref]

Angupillai, S.

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Armand, M.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

Bae, H. W.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Bi, Z.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Bita, I.

I. Bita, A. Govil, and E. P. Gusev, Handbook of Visual Display Technology (Springer, 2012).

Burkinshaw, S. M.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Camara, A.

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Chen, C. P.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Chen, L. C.

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

Chen, Y.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Chen, Z. Z.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Chiappe, C.

C. Chiappe and D. Pieraccini, “Ionic liquids: solvent properties and organic reactivity,” J. Phys. Org. Chem. 18(4), 275–297 (2005).
[Crossref]

Cho, E. C.

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

Christiansen, D. T.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Endres, F.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

Fang, Y. W.

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

Frater, L. P.

W. J. B. Heffernan, L. P. Frater, and N. R. Watson, “LED replacement for fluorescent tube lighting,” in The Power Engineering Conference (AUPEC, 2007), pp. 1–6.

Frisbie, C. D.

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

Fukuoka, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Gee, J. M.

J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
[Crossref]

Gopalakrishna, B.

T. M. Aminabhavi and B. Gopalakrishna, “Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K,” J. Chem. Eng. Data 40(4), 856–861 (1995).
[Crossref]

Govil, A.

I. Bita, A. Govil, and E. P. Gusev, Handbook of Visual Display Technology (Springer, 2012).

Griffiths, J.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Gusev, E. P.

I. Bita, A. Govil, and E. P. Gusev, Handbook of Visual Display Technology (Springer, 2012).

Hao, J.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Hapiot, P.

P. Hapiot and C. Lagrost, “Electrochemical reactivity in room-temperature ionic liquids,” Chem. Rev. 108(7), 2238–2264 (2008).
[Crossref]

Hashizume, D.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

He, G.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Heffernan, W. J. B.

W. J. B. Heffernan, L. P. Frater, and N. R. Watson, “LED replacement for fluorescent tube lighting,” in The Power Engineering Conference (AUPEC, 2007), pp. 1–6.

Heflin, J. R.

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

Heikenfeld, J.

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18(2), 025027 (2008).
[Crossref]

Higuchi, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Ho, K. C.

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

Hsiao, Y. S.

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

Hsu, Y. C.

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

Hu, X.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Hu, X. D.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Huang, J. H.

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

Jain, V.

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

Jian, C. W. C.

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

Judd, D. B.

D. B. Judd, Color in Business, Science and Industry (Wiley, 1952).

Kamino, S.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Kim, C. H.

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

kim, G. W.

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Kim, Y. C.

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Ko, I. J.

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Kobayashi, N.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

Kuepfert, M.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Kwon, J. H.

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Lagrost, C.

P. Hapiot and C. Lagrost, “Electrochemical reactivity in room-temperature ionic liquids,” Chem. Rev. 108(7), 2238–2264 (2008).
[Crossref]

Laia, C. A. T.

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Lampande, R.

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Lee, K. C.

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

Lee, S. B.

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

Li, X.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Li, Y.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Li, Y. X.

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

Lodge, T. P.

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

Lu, J.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Ma, L. J.

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

MacFarlane, D. R.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

McCamy, C. S.

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity,” Color Res. Appl. 17(2), 142–144 (1992).
[Crossref]

Miura, S.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

Montazami, R.

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

Moon, H. C.

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

Mortimer, R. J.

R. J. Mortimer and T. S. Varley, “In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen,” Sol. Energy Mater. Sol. Cells 99, 213–220 (2012).
[Crossref]

R. J. Mortimer and T. S. Varley, “Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials,” Displays 32(1), 35–44 (2011).
[Crossref]

Muranaka, A.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Muthukumar, P.

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Nishimura, M.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

Noh, C. H.

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

Oh, H.

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

Oh, W.

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Ohno, H.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

Okamoto, Y.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Ono, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Österholm, A. M.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Oveisi, H.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Park, J. H.

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Parola, A. J.

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Peesan, M.

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

Pieraccini, D.

C. Chiappe and D. Pieraccini, “Ionic liquids: solvent properties and organic reactivity,” J. Phys. Org. Chem. 18(4), 275–297 (2005).
[Crossref]

Pina, F.

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Pinheiro, C.

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Qian, L.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Qin, Z. X.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Radhakrishnan, L.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Reynolds, J. R.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Rujiravanit, R.

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

Sabnis, R. W.

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

Savagian, L. R.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Sawada, D.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Scrosati, B.

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

Seo, D. G.

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

Shen, D. E.

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

Shimomura, T.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Shirasaki, Y.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Simmons, J. A.

J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
[Crossref]

Sirivat, A.

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

So, H. S.

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Son, Y.

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Steckl, A. J.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Su, B. L.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Su, Y.

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

Sun, B.

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18(2), 025027 (2008).
[Crossref]

Supaphol, P.

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

Suzuki, M.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Suzuki, N.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Tennent, N. H.

N. H. Tennent and J. H. Townsend, “The significance of the refractive index of adhesives for glass repair,” Stud. Conserv. 29(sup1), 205–212 (1984).
[Crossref]

Tong, Y. Z.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Tong, Z.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Towns, A. D.

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

Townsend, J. H.

N. H. Tennent and J. H. Townsend, “The significance of the refractive index of adhesives for glass repair,” Stud. Conserv. 29(sup1), 205–212 (1984).
[Crossref]

Tsao, J. Y.

J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
[Crossref]

Tsuda, K.

K. Tsuda, “Colour filters for LCDs,” Displays 14(2), 115–124 (1993).
[Crossref]

Uchiyama, M.

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

Urano, H.

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

Varley, T. S.

R. J. Mortimer and T. S. Varley, “In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen,” Sol. Energy Mater. Sol. Cells 99, 213–220 (2012).
[Crossref]

R. J. Mortimer and T. S. Varley, “Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials,” Displays 32(1), 35–44 (2011).
[Crossref]

Wang, C.

C. Wang and K. M. C. Wong, “Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes,” Inorg. Chem. 52(23), 13432–13441 (2013).
[Crossref]

Wang, H.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Watson, N. R.

W. J. B. Heffernan, L. P. Frater, and N. R. Watson, “LED replacement for fluorescent tube lighting,” in The Power Engineering Conference (AUPEC, 2007), pp. 1–6.

Weng, W.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Wong, K. M. C.

C. Wang and K. M. C. Wong, “Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes,” Inorg. Chem. 52(23), 13432–13441 (2013).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

Xu, X.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Yamauchi, Y.

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Yang, Q. B.

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

Yang, Z. J.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Yao, G. Q.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Yochum, H. M.

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

You, H.

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

Yu, T. J.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Yu, X. F.

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

Yun, T. Y.

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

Zhang, B.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Zhang, G. Y.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Zhang, K.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Zhang, S.

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Zhao, J.

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Zhou, X. Y.

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

ACS Appl. Mater. Interfaces (1)

H. C. Moon, C. H. Kim, T. P. Lodge, and C. D. Frisbie, “Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels,” ACS Appl. Mater. Interfaces 8(9), 6252–6260 (2016).
[Crossref]

Adv. Mater. Interfaces (1)

I. J. Ko, J. H. Park, G. W. kim, R. Lampande, and J. H. Kwon, “High-performance reflective electrochromic device by integrating white reflector and high optical density electrochromic system,” Adv. Mater. Interfaces 20191900710 (2019).
[Crossref]

Adv. Opt. Mater. (2)

L. R. Savagian, A. M. Österholm, D. E. Shen, D. T. Christiansen, M. Kuepfert, and J. R. Reynolds, “Conjugated Polymer Blends for High Contrast Black-to-Transmissive Electrochromism,” Adv. Opt. Mater. 6(19), 1800594 (2018).
[Crossref]

G. W. Kim, Y. C. Kim, I. J. Ko, J. H. Park, H. W. Bae, R. Lampande, and J. H. Kwon, “High-performance electrochromic optical shutter based on fluoran dye for visibility of augmented reality display,” Adv. Opt. Mater. 6(11), 1701382 (2018).
[Crossref]

Angew. Chem., Int. Ed. (1)

W. Weng, T. Higuchi, M. Suzuki, T. Fukuoka, T. Shimomura, M. Ono, L. Radhakrishnan, H. Wang, N. Suzuki, H. Oveisi, and Y. Yamauchi, “A high speed passive-matrix electrochromic display using a mesoporous TiO2 electrode with vertical porosity,” Angew. Chem., Int. Ed. 49(23), 3956–3959 (2010).
[Crossref]

Appl. Phys. Lett. (2)

H. You and A. J. Steckl, “Three-color electrowetting display device for electronic paper,” Appl. Phys. Lett. 97(2), 023514 (2010).
[Crossref]

V. Jain, H. M. Yochum, R. Montazami, and J. R. Heflin, “Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers,” Appl. Phys. Lett. 92(3), 033304 (2008).
[Crossref]

Carbohydr. Polym. (1)

M. Peesan, A. Sirivat, P. Supaphol, and R. Rujiravanit, “Dilute solution properties of hexanoyl chitosan in chloroform, dichloromethane, and tetrahydrofuran,” Carbohydr. Polym. 64(2), 175–183 (2006).
[Crossref]

Chem. Rev. (1)

P. Hapiot and C. Lagrost, “Electrochemical reactivity in room-temperature ionic liquids,” Chem. Rev. 108(7), 2238–2264 (2008).
[Crossref]

Color Res. Appl. (1)

C. S. McCamy, “Correlated color temperature as an explicit function of chromaticity,” Color Res. Appl. 17(2), 142–144 (1992).
[Crossref]

Displays (3)

R. J. Mortimer and T. S. Varley, “Quantification of colour stimuli through the calculation of CIE chromaticity coordinates and luminance data for application to insitu colorimetry studies of electrochromic materials,” Displays 32(1), 35–44 (2011).
[Crossref]

R. W. Sabnis, “Color filter technology for liquid crystal displays,” Displays 20(3), 119–129 (1999).
[Crossref]

K. Tsuda, “Colour filters for LCDs,” Displays 14(2), 115–124 (1993).
[Crossref]

Dyes Pigm. (1)

W. Oh, S. Angupillai, P. Muthukumar, H. S. So, and Y. Son, “Synthesis of novel tert-butyl substituted fluorans and an investigation of their thermochromic behavior,” Dyes Pigm. 128, 235–245 (2016).
[Crossref]

Electrochim. Acta (1)

Y. Chen, Z. Bi, X. Li, X. Xu, S. Zhang, and X. Hu, “High-coloration efficiency electrochromic device based on novel porous TiO2@prussian blue core-shell nanostructures,” Electrochim. Acta 224(10), 534–540 (2017).
[Crossref]

Inorg. Chem. (1)

C. Wang and K. M. C. Wong, “Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes,” Inorg. Chem. 52(23), 13432–13441 (2013).
[Crossref]

J. Chem. Eng. Data (1)

T. M. Aminabhavi and B. Gopalakrishna, “Density, viscosity, refractive index, and speed of sound in aqueous mixtures of N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, acetonitrile, ethylene glycol, diethylene glycol, 1, 4-dioxane, tetrahydrofuran, 2-methoxyethanol, and 2-ethoxyethanol at 298.15 K,” J. Chem. Eng. Data 40(4), 856–861 (1995).
[Crossref]

J. Disp. Technol. (1)

C. P. Chen, Y. Li, Y. Su, G. He, J. Lu, and L. Qian, “Transmissive interferometric display with single-layer Fabry–Pérot filter,” J. Disp. Technol. 11(9), 715–719 (2015).
[Crossref]

J. Mater. Chem. (1)

S. M. Burkinshaw, J. Griffiths, and A. D. Towns, “Reversibly thermochromic systems based on pH-sensitive functional dyes,” J. Mater. Chem. 8(12), 2677–2683 (1998).
[Crossref]

J. Mater. Chem. C (1)

Z. Tong, J. Hao, K. Zhang, J. Zhao, B. L. Su, and Y. Li, “Improved electrochromic performance and lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films,” J. Mater. Chem. C 2(18), 3651–3658 (2014).
[Crossref]

J. Micromech. Microeng. (1)

B. Sun and J. Heikenfeld, “Observation and optical implications of oil dewetting patterns in electrowetting displays,” J. Micromech. Microeng. 18(2), 025027 (2008).
[Crossref]

J. Org. Chem. (1)

Y. Shirasaki, Y. Okamoto, A. Muranaka, S. Kamino, D. Sawada, D. Hashizume, and M. Uchiyama, “Fused-fluoran leuco dyes with large color change derived from two-step equilibrium: iso-aminobenzopyranoxan-thenes,” J. Org. Chem. 81(23), 12046–12051 (2016).
[Crossref]

J. Phys. Org. Chem. (1)

C. Chiappe and D. Pieraccini, “Ionic liquids: solvent properties and organic reactivity,” J. Phys. Org. Chem. 18(4), 275–297 (2005).
[Crossref]

Nat. Mater. (1)

M. Armand, F. Endres, D. R. MacFarlane, H. Ohno, and B. Scrosati, “Ionic-liquid materials for the electrochemical challenges of the future,” Nat. Mater. 8(8), 621–629 (2009).
[Crossref]

New J. Chem. (1)

C. Pinheiro, A. J. Parola, C. A. T. Laia, A. Camara, and F. Pina, “Multiresponsive chromogenic systems operated by light and electrical inputs,” New J. Chem. 33(10), 2144–2147 (2009).
[Crossref]

Org. Electron. (1)

H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee, and H. C. Moon, “Novel viologen derivatives for electrochromic ion gels showing a green-colored state with improved stability,” Org. Electron. 51, 490–495 (2017).
[Crossref]

Phys. Status Solidi B (1)

Z. Z. Chen, J. Zhao, Z. X. Qin, X. D. Hu, T. J. Yu, Y. Z. Tong, Z. J. Yang, X. Y. Zhou, G. Q. Yao, B. Zhang, and G. Y. Zhang, “Study on the stability of the high-brightness white LED,” Phys. Status Solidi B 241(12), 2664–2667 (2004).
[Crossref]

Proc. SPIE (1)

J. M. Gee, J. Y. Tsao, and J. A. Simmons, “Prospects for LED lighting,” Proc. SPIE 5187, 227–234 (2004).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

N. Kobayashi, S. Miura, M. Nishimura, and H. Urano, “Organic electrochromism for a new color electronic paper,” Sol. Energy Mater. Sol. Cells 92(2), 136–139 (2008).
[Crossref]

E. C. Cho, C. W. C. Jian, Y. S. Hsiao, K. C. Lee, and J. H. Huang, “Influence of the bridging atom on the electrochromic performance of a cyclopentadithiophene polymer,” Sol. Energy Mater. Sol. Cells 150, 43–50 (2016).
[Crossref]

R. J. Mortimer and T. S. Varley, “In situ spectroelectrochemistry and colour measurement of a complementary electrochromic device based on surface-confined Prussian blue and aqueous solution-phase methyl viologen,” Sol. Energy Mater. Sol. Cells 99, 213–220 (2012).
[Crossref]

L. J. Ma, Y. X. Li, X. F. Yu, Q. B. Yang, and C. H. Noh, “Using room temperature ionic liquid to fabricate PEDOT/TiO2 nanocomposite electrode-based electrochromic devices with enhanced long-term stability,” Sol. Energy Mater. Sol. Cells 92(10), 1253–1259 (2008).
[Crossref]

Solid State Ionics (1)

K. C. Ho, Y. W. Fang, Y. C. Hsu, and L. C. Chen, “The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD,” Solid State Ionics 165(1-4), 279–287 (2003).
[Crossref]

Stud. Conserv. (1)

N. H. Tennent and J. H. Townsend, “The significance of the refractive index of adhesives for glass repair,” Stud. Conserv. 29(sup1), 205–212 (1984).
[Crossref]

Other (4)

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).

D. B. Judd, Color in Business, Science and Industry (Wiley, 1952).

W. J. B. Heffernan, L. P. Frater, and N. R. Watson, “LED replacement for fluorescent tube lighting,” in The Power Engineering Conference (AUPEC, 2007), pp. 1–6.

I. Bita, A. Govil, and E. P. Gusev, Handbook of Visual Display Technology (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Color change properties of red, green and blue dyes. Real images and optical density (setting the THF solvent in same quartz cell to baseline) of (a) Red dye, (b) Green dye, and (c) Blue dye.
Fig. 2.
Fig. 2. The transmittance properties of TCECF with different solvents. To select the best solvent for red dye, green dye and blue dye, the transmittance of (a) R-TCECF, (b) G-TCECF, and (c) B-TCECF with different solvents was measured at 1.7 V in the visible wavelength region (400∼700 nm).The transmittance characteristics were measured by utilizing two glass substrates for setting a baseline.
Fig. 3.
Fig. 3. Transmittance of optimized TCECF in the visible wavelength region (400∼700 nm) at different voltages (0 to 1.7 V), (a) Red-TCECF, (b) Green-TCECF and (c) Blue-TCECF. (d) Calculated CIE 1931 color coordinates of Red-, Green-, and Blue- TCECF are expressed in CIE 1931 color space for 0.7 V to 1.7 V range including initial state (0 V). The color coordinates are determined from the measured transmittance and the D55 standard illuminant spectra. (e) Real images of TCECF with different applied voltages.
Fig. 4.
Fig. 4. Response times of Red-, Green-, and Blue-TCECFs. Response time was measured from the transmittance change of TCECF versus time at 0.1 s intervals. The change in transmittance of TCECF is noticeable at 1.7 V.
Fig. 5.
Fig. 5. The driving stability of (a) Red-, (b) Green-, and (c) Blue-TCECFs. The variations in the transmittance were measured in the bleached (0.0 V) and colored (1.5 V) states under multiple driving cycles. Inset: An applied voltage pulse during the driving stability test.
Fig. 6.
Fig. 6. Coloration efficiency of (a) Red-TCECF, (b) Green-TCECF and (c) Blue-TCECF. Coloration efficiency was evaluated from the slope of optical density change (ΔOD) curve. The charge density and ΔOD were obtained from the device current and UV-Vis spectrophotometer, respectively.
Fig. 7.
Fig. 7. Three-stack full color producible ECF. (a) The schematic of proposed concept of three-stack full color producible ECF and real images of Red, Green, Blue, and White color prototypes. These images are achieved using white LED backlight for each color. (b) Transmittance of three-stack ECF was measured at 0 V for white color, and at 1.7 V for Red, Green, and Blue colors.
Fig. 8.
Fig. 8. Correlated Color Temperature (CCT) of three-stack ECF. CCT of white light can be adjusted from warm white to cool white by selectively driving each Red, Green, and Blue color. The CCT was calculated from the selectively driven optical results and its values are presented along with the Planckian Locus line (pink line) on the CIE 1931 color space.

Tables (2)

Tables Icon

Table 1. CIE 1931 color coordinates of Red-, Green-, and Blue-TCECF according to the applied voltage

Tables Icon

Table 2. White tuning voltage and CIE 1931 color coordinates of Red-, Green-, and Blue-TCECFs for CCT adjustment.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C o l o r a t i o n e f f i c i e n c y ( λ ) = Δ O D Q ,
Δ O D ( λ ) = l o g T b T c .
K = 437 n 3 + 360 n 2 6861 n + 5514.31 ,
n = ( x 0.3320 ) ( y 0.1858 ) .
X = 380 780 I ( λ ) x ¯ ( λ ) d λ ,
Y 380 780 I ( λ ) y ¯ ( λ ) d λ ,
Z = 380 780 I ( λ ) z ¯ ( λ ) d λ .
I ( λ ) = k S ( λ ) T ( λ ) .
x = X X + Y + Z ,
y = Y X + Y + Z ,
z = Z X + Y + Z = 1 x y .

Metrics