Abstract

Anisotropic transverse light scattering by prismatic nanowires is a natural outcome of their geometry. In this work, we perform numerical calculations of the light scattering characteristics for nanowires in the optical and near-infrared range and explore the possibility of tuning the directivity by changing the angle of light incidence. The scattering cross section and the directivity of the scattered light when it is incident perpendicular to a facet or to an edge of the prism are investigated both with transverse electric and with transverse magnetic polarizations. The phenomenology includes Mie resonances and guided modes yielding together rich and complex spectra. We consider nanowires with hexagonal, square and triangular cross sections. The modes that are most sensitive to the incidence angle are the hexapole for the hexagonal case and the quadrupole for the square case. Higher order modes are also sensitive, but mostly for the square geometry. Our results indicate the possibility of a flexible in-situ tunability of the directivity simply by rotating the nanowire profile relatively to the direction of the incident light which could offer potential advantages in applications such as switching or sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulation of waveguiding and emitting properties of semiconductor nanowires with hexagonal or circular sections

Anne-Line Henneghien, Bruno Gayral, Yohan Désières, and Jean-Michel Gérard
J. Opt. Soc. Am. B 26(12) 2396-2403 (2009)

Spatially localized wavelength-selective absorption in morphology-modulated semiconductor nanowires

Jin Sik Choi, Kyoung-Ho Kim, and You-Shin No
Opt. Express 25(19) 22750-22759 (2017)

Semiconductor nanowire lasers

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong
Adv. Opt. Photon. 5(3) 216-273 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
    [Crossref]
  2. P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
    [Crossref]
  3. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  4. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
    [Crossref]
  5. S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
    [Crossref]
  6. V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
    [Crossref]
  7. S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
    [Crossref]
  8. S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
    [Crossref]
  9. S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
    [Crossref]
  10. R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
    [Crossref]
  11. Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
    [Crossref]
  12. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
    [Crossref]
  13. G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
    [Crossref]
  14. G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
    [Crossref]
  15. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref]
  16. J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
    [Crossref]
  17. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  18. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref]
  19. V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
    [Crossref]
  20. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
    [Crossref]
  21. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
    [Crossref]
  22. H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
    [Crossref]
  23. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
    [Crossref]
  24. P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
    [Crossref]
  25. M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
    [Crossref]
  26. S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
    [Crossref]
  27. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref]
  28. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
    [Crossref]
  29. J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
    [Crossref]
  30. M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
    [Crossref]
  31. D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
    [Crossref]
  32. C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
    [Crossref]
  33. T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
    [Crossref]
  34. P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
    [Crossref]
  35. K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
    [Crossref]
  36. H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
    [Crossref]
  37. F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
    [Crossref]
  38. L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
    [Crossref]
  39. Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
    [Crossref]
  40. C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
    [Crossref]
  41. X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
    [Crossref]
  42. D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
    [Crossref]
  43. F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
    [Crossref]
  44. O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
    [Crossref]
  45. S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
    [Crossref]
  46. S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
    [Crossref]
  47. M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
    [Crossref]
  48. A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
    [Crossref]
  49. S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).
  50. A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
    [Crossref]
  51. A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
    [Crossref]
  52. M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
    [Crossref]
  53. T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
    [Crossref]
  54. B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
    [Crossref]
  55. A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
    [Crossref]
  56. M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
    [Crossref]
  57. A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
    [Crossref]
  58. D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
    [Crossref]
  59. T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
    [Crossref]
  60. P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
    [Crossref]
  61. P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
    [Crossref]
  62. P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
    [Crossref]
  63. COMSOL Multiphysics v. 5.4. www.comsol.com , COMSOL AB, Stock. Swed.
  64. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [Crossref]
  65. M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).
  66. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
    [Crossref]
  67. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
    [Crossref]
  68. Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
    [Crossref]
  69. Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
    [Crossref]
  70. W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
    [Crossref]
  71. W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
    [Crossref]
  72. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
    [Crossref]
  73. A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
    [Crossref]
  74. W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
    [Crossref]
  75. Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
    [Crossref]
  76. R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
    [Crossref]

2019 (3)

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

2018 (4)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

2017 (13)

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

2016 (8)

M. A. van de Haar, J. van de Groep, B. J. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

2015 (10)

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

2014 (6)

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

2013 (10)

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

J. van de Groep and A. Polman, “Designing dielectric resonators on substrates: Combining magnetic and electric resonances,” Opt. Express 21(22), 26285–26302 (2013).
[Crossref]

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

2012 (7)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

2011 (4)

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

2010 (2)

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

2009 (2)

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

2006 (1)

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

2004 (1)

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

1983 (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

A. Rikken, G. L. J.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Abay, S.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Abstreiter, G.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Abujetas, D. R.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Aizpurua, J.

Albella, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Ang, G.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Arbouet, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Baird, L.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Ballester, A.

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Bardarson, J. H.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Barnard, E. S.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

Baron, T.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Barreda, A. I.

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Barreda, Á. I.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

Barrelet, C. J.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Barten, T.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Baryshnikova, K. V.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Belov, P.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Bertoni, A.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Blömers, C.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Bohren, C.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Borgström, M. T.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Brener, I.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Brenny, B. J.

Broky, J.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Brown, A. M.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Cambiasso, J.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Cao, L.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

Caroff, P.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Chantada, L.

Chen, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Christianen, P. C. M.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Cortés, E.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Cuche, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Dalelkhan, B.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

de la Osa, R. A.

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

del Águila, A. G.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Demarina, N.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

Deng, M. T.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

des Francs, G. C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Ding, W.

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Döblinger, M.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Dogariu, A.

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Dong, Y.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Douglass, K. M.

Ee, H.-S.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Erlingsson, S. I.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Evlyukhin, A. B.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Eyraud, C.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Ezhov, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Fan, H.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Fan, P.

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Fedyanin, A. A.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Finley, J. J.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Fontana, Y.

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Fournel, F.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Froufe-Pérez, L. S.

Fu, D.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Fu, Y. H.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Gao, Q.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

García-Cámara, B.

García-Etxarri, A.

Geffrin, J.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Geffrin, J.-M.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Girard, C.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Gómez-Medina, R.

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

González, F.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Göransson, D. J. O.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Gosele, U.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Gradecak, S.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Grinblat, G.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Grützmacher, D.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Grzela, G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Gudmundsson, V.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Gül, O.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

Guo, Y.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Gutiérrez, Y.

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

Haas, F.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Haegel, N.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Hardtdegen, H.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Heedt, S.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Hess, O.

Hesse, D.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Heurlin, M.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Hopkins, B.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Hu, H.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

Huang, L.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Huffman, D. R.

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

Jackson, H. E.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Jagadish, C.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Jain, M.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Janker, L.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Kacman, P.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Kajorndejnukul, V.

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Kang, J.-H.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Kapitanova, P.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Karabchevsky, A.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Kempa, T. J.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Kivshar, Y.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Knez, M.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Koblmüller, G.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Krenner, H. J.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Krogstrup, P.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Kuznetsov, A. I.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Lapin, Z.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Larrey, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Larrieu, G.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lecestre, A.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Lei, B.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

Lepsa, M. I.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Li, J.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Li, Q.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Li, Y.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Lieber, C. M.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Litman, A.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Liu, W.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Ma, W. Xie, and H. Hu, “Ultra-directional forward scattering by individual core-shell nanoparticles,” Opt. Express 22(13), 16178–16187 (2014).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

López, C.

Low, C.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Lu, J. G.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Lukyanchuk, B.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Lüth, H.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Luysberg, M.

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Ma, H.

Maier, S. A.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Maisi, V. F.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Mandujano, M. A. G.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Manolescu, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Marcus, C. M.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Mascher, P.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Matsui, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Maude, D. K.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Melik-Gaykazyan, E. V.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Méndez, E. R.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

Messing, M. E.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Miroshnichenko, A.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Mitioglu, A. A.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Moreno, F.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Naraghi, R.

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

Nemnes, G. A.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Neshev, D. N.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

Nielsch, K.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Nieto-Vesperinas, M.

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

Novotny, L.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Osca, J.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, R. F. Oulton, D. N. Neshev, O. Hess, and Y. S. Kivshar, “Scattering of core-shell nanowires with the interference of electric and magnetic resonances,” Opt. Lett. 38(14), 2621–2624 (2013).
[Crossref]

Paillard, V.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Paiman, S.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Paniagua-Domínguez, R.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Pavlov, N.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Pemasiri, K.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Person, S.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Pippel, E.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Planelles, J.

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

Plochocka, P.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Polman, A.

Prost, W.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Qian, F.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Qiu, C.-W.

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Rakovich, A.

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Rieger, T.

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

Rivas, J. G.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Roschuk, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

Rudolph, D.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Ruhstorfer, D.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Sáenz, J. J.

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

B. García-Cámara, R. Gómez-Medina, J. J. Sáenz, and B. Sepúlveda, “Sensing with magnetic dipolar resonances in semiconductor nanospheres,” Opt. Express 21(20), 23007–23020 (2013).
[Crossref]

A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
[Crossref]

Saleh, H.

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Sanchez, D.

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Sánchez-Gil, J. A.

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

Sanz, J. M.

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

A. I. Barreda, J. M. Sanz, and F. González, “Using linear polarization for sensing and sizing dielectric nanoparticles,” Opt. Express 23(7), 9157–9166 (2015).
[Crossref]

Schäpers, T.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

Scheffold, F.

Scholz, R.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Schubert, J.

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

Schuller, J. A.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Seo, M.-K.

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

Sepúlveda, B.

Serra, L.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Shalin, A. S.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Shcherbakov, M. R.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Shi, J.

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

Shibanuma, T.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Shorokhov, A. S.

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

Shtrikman, H.

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

Sitek, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Sladek, K.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Smith, L. M.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Sonner, M. M.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Stanescu, T. D.

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

Sukhov, S.

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

R. Naraghi, S. Sukhov, and A. Dogariu, “Directional control of scattering by all-dielectric core-shell spheres,” Opt. Lett. 40(4), 585–588 (2015).
[Crossref]

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov, V. Kajorndejnukul, J. Broky, and A. Dogariu, “Forces in aharonov-bohm optical setting,” Optica 1(6), 383–387 (2014).
[Crossref]

S. Sukhov, K. M. Douglass, and A. Dogariu, “Dipole-dipole interaction in random electromagnetic fields,” Opt. Lett. 38(14), 2385–2387 (2013).
[Crossref]

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

Talin, A.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Tan, H. H.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Terekhov, P. D.

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Ternovski, V.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Thorgilsson, G.

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

Tian, B.

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

Torfason, K.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

Torres, M. U.

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

Tribelsky, M.

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Tribelsky, M. I.

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

Vaitiekenas, S.

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

Valuckas, V.

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

van Dam, D.

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

van de Groep, J.

van de Haar, M. A.

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

von der Ahe, M.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Wan, M.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wang, D.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Wang, F.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Wang, G.

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Wang, W.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Wang, Y.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Wang, Z.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Wei, X.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Weirich, T. E.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Wicks, G.

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

Wiecha, P. R.

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

Winden, A.

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

Witte, C.

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Wixforth, A.

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

Wojcik, J.

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

Wong, B. M.

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

Wu, H.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Wu, W.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Xie, W.

Xu, H. Q.

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

Yuan, X.

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Zacharias, M.

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Zhan, P.

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

Zhang, J.

Zhang, Z.

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Zhanj, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6(6), 5489–5497 (2012).
[Crossref]

ACS Photonics (4)

T. Shibanuma, T. Matsui, T. Roschuk, J. Wojcik, P. Mascher, P. Albella, and S. A. Maier, “Experimental demonstration of tunable directional scattering of visible light from all-dielectric asymmetric dimers,” ACS Photonics 4(3), 489–494 (2017).
[Crossref]

P. R. Wiecha, A. Cuche, A. Arbouet, C. Girard, G. C. des Francs, A. Lecestre, G. Larrieu, F. Fournel, V. Larrey, T. Baron, and V. Paillard, “Strongly directional scattering from dielectric nanowires,” ACS Photonics 4(8), 2036–2046 (2017).
[Crossref]

D. R. Abujetas, M. A. G. Mandujano, E. R. Méndez, and J. A. Sánchez-Gil, “High-contrast fano resonances in single semiconductor nanorods,” ACS Photonics 4(7), 1814–1821 (2017).
[Crossref]

P. Albella, R. A. de la Osa, F. Moreno, and S. A. Maier, “Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies,” ACS Photonics 1(6), 524–529 (2014).
[Crossref]

Adv. Funct. Mater. (1)

X. Yuan, P. Caroff, F. Wang, Y. Guo, Y. Wang, H. E. Jackson, L. M. Smith, H. H. Tan, and C. Jagadish, “Antimony induced 112a faceted triangular GaAs$_{1x}$1x Sb$_{x}$x/InP core/shell nanowires and their enhanced optical quality,” Adv. Funct. Mater. 25(33), 5300–5308 (2015).
[Crossref]

Appl. Phys. Lett. (2)

D. J. O. Göransson, M. Heurlin, B. Dalelkhan, S. Abay, M. E. Messing, V. F. Maisi, M. T. Borgström, and H. Q. Xu, “Coulomb blockade from the shell of an InP-InAs core-shell nanowire with a triangular cross section,” Appl. Phys. Lett. 114(5), 053108 (2019).
[Crossref]

V. Valuckas, R. Paniagua-Domínguez, Y. H. Fu, B. Lukyanchuk, and A. I. Kuznetsov, “Direct observation of resonance scattering patterns in single silicon nanoparticles,” Appl. Phys. Lett. 110(9), 091108 (2017).
[Crossref]

J. Appl. Phys. (3)

K. Pemasiri, H. E. Jackson, L. M. Smith, B. M. Wong, S. Paiman, Q. Gao, H. H. Tan, and C. Jagadish, “Quantum confinement of excitons in wurtzite InP nanowires,” J. Appl. Phys. 117(19), 194306 (2015).
[Crossref]

A. Ballester, J. Planelles, and A. Bertoni, “Multi-particle states of semiconductor hexagonal rings: Artificial benzene,” J. Appl. Phys. 112(10), 104317 (2012).
[Crossref]

P. D. Terekhov, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Polarization-dependent asymmetric light scattering by silicon nanopyramids and their multipoles resonances,” J. Appl. Phys. 125(17), 173108 (2019).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Nano Lett. (18)

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett. 10(2), 439–445 (2010).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna emission,” Nano Lett. 12(11), 5481–5486 (2012).
[Crossref]

G. Grzela, R. Paniagua-Domínguez, T. Barten, D. van Dam, J. A. Sánchez-Gil, and J. G. Rivas, “Nanowire antenna absorption probed with time-reversed fourier microscopy,” Nano Lett. 14(6), 3227–3234 (2014).
[Crossref]

J. Cambiasso, G. Grinblat, Y. Li, A. Rakovich, E. Cortés, and S. A. Maier, “Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas,” Nano Lett. 17(2), 1219–1225 (2017).
[Crossref]

M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, “Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response,” Nano Lett. 14(11), 6488–6492 (2014).
[Crossref]

C. Blömers, M. I. Lepsa, M. Luysberg, J. G. Lu, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic phase coherence in InAs nanowires,” Nano Lett. 11(9), 3550–3556 (2011).
[Crossref]

T. Rieger, M. Luysberg, T. Schäpers, D. Grützmacher, and M. I. Lepsa, “Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes,” Nano Lett. 12(11), 5559–5564 (2012).
[Crossref]

P. Plochocka, A. A. Mitioglu, D. K. Maude, G. L. J. A. Rikken, A. G. del Águila, P. C. M. Christianen, P. Kacman, and H. Shtrikman, “High magnetic field reveals the nature of excitons in a single GaAs/AlAs core/shell nanowire,” Nano Lett. 13(6), 2442–2447 (2013).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012).
[Crossref]

H.-S. Ee, J.-H. Kang, M. L. Brongersma, and M.-K. Seo, “Shape-dependent light scattering properties of subwavelength silicon nanoblocks,” Nano Lett. 15(3), 1759–1765 (2015).
[Crossref]

L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanostructures,” Nano Lett. 10(7), 2649–2654 (2010).
[Crossref]

S. Person, M. Jain, Z. Lapin, J. J. Sáenz, G. Wicks, and L. Novotny, “Demonstration of zero optical backscattering from single nanoparticles,” Nano Lett. 13(4), 1806–1809 (2013).
[Crossref]

A. Sitek, M. U. Torres, K. Torfason, V. Gudmundsson, A. Bertoni, and A. Manolescu, “Excitons in core-shell nanowires with nolygonal nross sections,” Nano Lett. 18(4), 2581–2589 (2018).
[Crossref]

M. M. Sonner, A. Sitek, L. Janker, D. Rudolph, D. Ruhstorfer, M. Döblinger, A. Manolescu, G. Abstreiter, J. J. Finley, A. Wixforth, G. Koblmüller, and H. J. Krenner, “Breakdown of corner states and carrier localization by monolayer fluctuations in radial nanowire quantum wells,” Nano Lett. 19(5), 3336–3343 (2019).
[Crossref]

S. Heedt, A. Manolescu, G. A. Nemnes, W. Prost, J. Schubert, D. Grützmacher, and T. Schäpers, “Adiabatic edge channel transport in a nanowire quantum point contact register,” Nano Lett. 16(7), 4569–4575 (2016).
[Crossref]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. J. Barrelet, and C. M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4(10), 1975–1979 (2004).
[Crossref]

Y. Dong, B. Tian, T. J. Kempa, and C. M. Lieber, “Coaxial group III-Nitride nanowire photovoltaics,” Nano Lett. 9(5), 2183–2187 (2009).
[Crossref]

C. Blömers, J. G. Lu, L. Huang, C. Witte, D. Grützmacher, H. Lüth, and T. Schäpers, “Electronic transport with dielectric confinement in degenerate inn nanowires,” Nano Lett. 12(6), 2768–2772 (2012).
[Crossref]

Nanoscale (1)

T. Shibanuma, P. Albella, and S. A. Maier, “Unidirectional light scattering with high efficiency at optical frequencies based on low-loss dielectric nanoantennas,” Nanoscale 8(29), 14184–14192 (2016).
[Crossref]

Nanotechnology (3)

F. Haas, K. Sladek, A. Winden, M. von der Ahe, T. E. Weirich, T. Rieger, H. Lüth, D. Grützmacher, T. Schäpers, and H. Hardtdegen, “Nanoimprint and selective-area movpe for growth of GaAs/InAs core/shell nanowires,” Nanotechnology 24(8), 085603 (2013).
[Crossref]

A. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing,” Nanotechnology 27(23), 234002 (2016).
[Crossref]

H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Gosele, and M. Zacharias, “Single-crystalline MgAl 2 o 4 spinel nanotubes using a reactive and removable MgO nanowire template,” Nanotechnology 17(20), 5157–5162 (2006).
[Crossref]

Nat. Commun. (3)

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Lukyanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4(1), 1527 (2013).
[Crossref]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6(1), 7915 (2015).
[Crossref]

A. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “Electromagnetic polarization-controlled perfect switching effect with high-refractive-index dimers and the beam-splitter configuration,” Nat. Commun. 8(1), 13910 (2017).
[Crossref]

Nat. Photonics (2)

V. Kajorndejnukul, W. Ding, S. Sukhov, C.-W. Qiu, and A. Dogariu, “Linear momentum increase and negative optical forces at dielectric interface,” Nat. Photonics 7(10), 787–790 (2013).
[Crossref]

S. Sukhov, V. Kajorndejnukul, R. Naraghi, and A. Dogariu, “Dynamic consequences of optical spin-orbit interaction,” Nat. Photonics 9(12), 809–812 (2015).
[Crossref]

Opt. Commun. (1)

D. Fu, Z. Zhang, J. Li, H. Wu, W. Wang, and X. Wei, “Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing,” Opt. Commun. 390, 41–48 (2017).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Opt. Photonics News (1)

Y. Kivshar and A. Miroshnichenko, “Meta-optics with mie resonances,” Opt. Photonics News 28(1), 24–31 (2017).
[Crossref]

Optica (1)

Phys. B (1)

L. Baird, G. Ang, C. Low, N. Haegel, A. Talin, Q. Li, and G. Wang, “Imaging minority carrier diffusion in gan nanowires using near field optical microscopy,” Phys. B 404(23-24), 4933–4936 (2009).
[Crossref]

Phys. Rev. B (6)

O. Gül, N. Demarina, C. Blömers, T. Rieger, H. Lüth, M. I. Lepsa, D. Grützmacher, and T. Schäpers, “Flux periodic magnetoconductance oscillations in GaAs/InAs core/shell nanowires,” Phys. Rev. B 89(4), 045417 (2014).
[Crossref]

M. U. Torres, A. Sitek, S. I. Erlingsson, G. Thorgilsson, V. Gudmundsson, and A. Manolescu, “Conductance features of core-shell nanowires determined by their internal geometry,” Phys. Rev. B 98(8), 085419 (2018).
[Crossref]

A. Manolescu, A. Sitek, J. Osca, L. Serra, V. Gudmundsson, and T. D. Stanescu, “Majorana states in prismatic core-shell nanowires,” Phys. Rev. B 96(12), 125435 (2017).
[Crossref]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84(23), 235429 (2011).
[Crossref]

Phys. Rev. Lett. (3)

R. Naraghi, S. Sukhov, J. J. Sáenz, and A. Dogariu, “Near-field effects in mesoscopic light transport,” Phys. Rev. Lett. 115(20), 203903 (2015).
[Crossref]

S. Sukhov and A. Dogariu, “Negative nonconservative forces: Optical “tractor beams” for arbitrary objects,” Phys. Rev. Lett. 107(20), 203602 (2011).
[Crossref]

S. I. Erlingsson, A. Manolescu, G. A. Nemnes, J. H. Bardarson, and D. Sanchez, “Reversal of thermoelectric current in tubular nanowires,” Phys. Rev. Lett. 119(3), 036804 (2017).
[Crossref]

Proc. SPIE (1)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Optical multipole resonances of non-spherical silicon nanoparticles and the influence of illumination direction,” Proc. SPIE 10528, 1 (2018).
[Crossref]

Sci. Rep. (8)

Á. I. Barreda, Y. Gutiérrez, J. M. Sanz, F. González, and F. Moreno, “Light guiding and switching using eccentric core-shell geometries,” Sci. Rep. 7(1), 11189 (2017).
[Crossref]

Á. I. Barreda, H. Saleh, A. Litman, F. González, J.-M. Geffrin, and F. Moreno, “On the scattering directionality of a dielectric particle dimer of high refractive index,” Sci. Rep. 8(1), 7976 (2018).
[Crossref]

W. Liu, B. Lei, J. Shi, and H. Hu, “Unidirectional superscattering by multilayered cavities of effective radial anisotropy,” Sci. Rep. 6(1), 34775 (2016).
[Crossref]

Y. Li, M. Wan, W. Wu, Z. Chen, P. Zhan, and Z. Wang, “Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles,” Sci. Rep. 5(1), 12491 (2015).
[Crossref]

P. Albella, T. Shibanuma, and S. A. Maier, “Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers,” Sci. Rep. 5(1), 18322 (2016).
[Crossref]

M. I. Tribelsky, J. Geffrin, A. Litman, C. Eyraud, and F. Moreno, “Small dielectric spheres with high refractive index as new multifunctional elements for optical devices,” Sci. Rep. 5(1), 12288 (2015).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhanj, and B. Lukyanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref]

P. Kapitanova, V. Ternovski, A. Miroshnichenko, N. Pavlov, P. Belov, Y. Kivshar, and M. Tribelsky, “Giant field enhancement in high-index dielectric subwavelength particles,” Sci. Rep. 7(1), 731 (2017).
[Crossref]

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), 2472 (2016).
[Crossref]

Other (4)

C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

S. Vaitiekėnas, M. T. Deng, P. Krogstrup, and C. M. Marcus, “Flux-induced Majorana modes in full-shell nanowires,” arXiv:1809.05513 (2018).

M. U. Torres, A. Sitek, and A. Manolescu, “Transverse polarization light scattering in tubular semiconductor nanowires,” ICTON2019, arXiv:1905.02268 (2019).

COMSOL Multiphysics v. 5.4. www.comsol.com , COMSOL AB, Stock. Swed.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Sketch of the two polarizations (TE and TM) of the incident light, for example on a nanowire with square cross section, and the different angles of incidence studied in each polygonal geometry: hexagonal, square, and triangular.
Fig. 2.
Fig. 2. The scattering cross section vs. wavelength, for different incidence angles of light, for short nanoprisms with length $L = 200$ nm, of hexagonal (a,b), square (c,d), and triangular (e,f) cross section, with radii $R = 175, 200, 250$ nm, respectively. Figures a, c, e correspond to TE polarization and b, d, f to TM polarization. The colors of the curves match the colors of the incidence angle in Fig. 1: the red and blue curves correspond to the scattering cross section obtained with the light incident along the corner-center direction and incident perpendicular to one of the facets of the prism, respectively. In the triangular case the total scattering cross section with the light inciding at ${60}^\circ$ is indistinguishable from the case corresponding to ${0}^\circ$ and the dashed curves correspond to the individual contributions of the dipole moments (ED and MD). The vertical lines correspond to the wavelength values for which the directivity patterns are shown in Fig. 3.
Fig. 3.
Fig. 3. 2D radiation patterns for the hexagon (a,b), square (c,d) and triangular (e,f) nanoprisms. ${0}^\circ$ corresponds to forward scattering. The colors of the figures again match the colors of the incidence angle shown in Fig. 1. For the hexagonal nanoparticle the wavelength is $\lambda = 540$ nm and TE polarization in (a) and $\lambda = 636$ nm and TM polarization in (b). For the square $\lambda = 636$ nm and TE in (c) and $\lambda = 816$ nm and TM in (d). For the triangular case $\lambda = 640$ nm and TE (e) and $\lambda = 1148$ nm and TM where the Kerker condition is satisfied (f). The units for the far-field norm are $10^{-7}$ V/m.
Fig. 4.
Fig. 4. Asymmetry parameter as a function of the wavelength for the hexagonal (a,b), square (c,d), and triangular (e,f) nanoprisms as in Fig 2. The blue lines also correspond to the same wavelength for which the directivity patterns where obtained in Fig. 3
Fig. 5.
Fig. 5. Electric field configurations inside the nanoparticles. The direction of incidence of the light is parallel to the $x$ axis with TE or TM polarization depending on the orientation of the nanoparticles. The units of the electric field in the color scale are V/m.
Fig. 6.
Fig. 6. As in Fig. 2 for nanowires with radii of $R = 100, 135, 175$ nm for the hexagonal, square, and triangular geometry, respectively, and $L = 600$ nm.
Fig. 7.
Fig. 7. 2D radiation patterns for the hexagonal nanowires for TE at $\lambda = 692$ nm (a) and TM at at $\lambda = 784$ nm (b). Square nanowire for TE at $\lambda = 470$ nm (c) and for TM at $\lambda = 562$ nm (d). (e) and (f) for the triangular nanowires at $\lambda = 504$ nm and $\lambda = 444$ nm for TE and TM polarizations, respectively. The color code is the same as in Fig. 3.
Fig. 8.
Fig. 8. Asymmetry parameter as a function of the wavelength as in Fig. 4 for long nanowires.
Fig. 9.
Fig. 9. Electric field configurations inside the nanowires, as in Fig. 5.

Metrics