Abstract

A method based on digital image correlation (DIC) for the surface shape measurement of specular surface by shifting a speckle pattern, which is displayed on an LCD screen, is proposed in this paper. With this method, the deformed information of test surface is encoded within the displacement distribution between the two recorded speckle images before and after the speckle pattern shifted. The displacement distribution is calculated by the DIC algorithm, then the slope data and the surface shape are obtained. The principle and algorithm of speckle pattern shifting deflectometry (SPSD) are described in detail. The correctness and feasibility of the proposed method are verified by simulation, and the source of error is analyzed as well. Finally, the shape of an acrylic plastic plate and a silicon wafer are measured. The experimental result of the proposed method is compared with that of PMD, and the figure error is around 1μm RMS with a measured diameter of about 100mm. This method has the advantages of fast measurement, simple device, low cost and needlessness of reference element. It provides a new approach to measure the shape of specular surface.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D shape measurement of discontinuous specular objects based on advanced PMD with bi-telecentric lens

Zhenqi Niu, Nan Gao, Zonghua Zhang, Feng Gao, and Xiangqian Jiang
Opt. Express 26(2) 1615-1632 (2018)

Four-step shear method for the absolute measurement of a flat surface based on phase measuring deflectometry

Kewei E, Dahai Li, Chen Zhang, Tao Zhang, Mengyang Li, Qin Wang, Chengying Jin, and Zhao Xiong
Appl. Opt. 55(30) 8419-8425 (2016)

Optimized digital speckle patterns for digital image correlation by consideration of both accuracy and efficiency

Zhenning Chen, Xinxing Shao, Xiangyang Xu, and Xiaoyuan He
Appl. Opt. 57(4) 884-893 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
    [Crossref]
  2. Y. Tang, X. Su, Y. Liu, and H. Jing, “3d shape measurement of the aspheric mirror by advanced phase measuring deflectometry,” Opt. Express 16(19), 15090–15096 (2008).
    [Crossref]
  3. E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
    [Crossref]
  4. X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
    [Crossref]
  5. C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
    [Crossref]
  6. L. Huang, C. Ng, and A. Asundi, “Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry,” Opt. Express 19(13), 12809–12814 (2011).
    [Crossref]
  7. P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
    [Crossref]
  8. H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
    [Crossref]
  9. W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21(3), 427–431 (1982).
    [Crossref]
  10. M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).
  11. B. Pan, “Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals,” Meas. Sci. Technol. 29(8), 082001 (2018).
    [Crossref]
  12. C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
    [Crossref]
  13. Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
    [Crossref]
  14. Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
    [Crossref]
  15. X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
    [Crossref]
  16. F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
    [Crossref]
  17. F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
    [Crossref]
  18. D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
    [Crossref]
  19. B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
    [Crossref]
  20. B. Pan, Z. Lu, and H. Xie, “Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Laser Eng. 48(4), 469–477 (2010).
    [Crossref]
  21. B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16(10), 7037–7048 (2008).
    [Crossref]
  22. B. Pan, H. Xie, and Z. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49(28), 5501–5509 (2010).
    [Crossref]
  23. B. Pan and B. Wang, “Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms,” Exp. Mech. 56(8), 1395–1409 (2016).
    [Crossref]
  24. J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
    [Crossref]
  25. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [Crossref]
  26. P. Su, R. Parks, L. Wang, R. Angel, and J. Burge, “Software configurable optical test system: a computerized reverse Hartmann test,” Appl. Opt. 49(23), 4404–4412 (2010).
    [Crossref]
  27. K. E, A Study of High Accuracy Surface Figure Measurement Based on Phase Measuring Deflectometry (Sichuan University, 2017).
  28. D. Korsch, Reflective Optics (Academic Press, 1991).
  29. M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
    [Crossref]
  30. C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express 15(26), 18014–18024 (2007).
    [Crossref]

2019 (3)

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
[Crossref]

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
[Crossref]

2018 (4)

D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
[Crossref]

B. Pan, “Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals,” Meas. Sci. Technol. 29(8), 082001 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

2017 (1)

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

2016 (1)

B. Pan and B. Wang, “Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms,” Exp. Mech. 56(8), 1395–1409 (2016).
[Crossref]

2015 (3)

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
[Crossref]

M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
[Crossref]

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

2013 (2)

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
[Crossref]

2011 (2)

L. Huang, C. Ng, and A. Asundi, “Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry,” Opt. Express 19(13), 12809–12814 (2011).
[Crossref]

P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
[Crossref]

2010 (3)

2008 (2)

2007 (1)

2006 (1)

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

2005 (1)

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

2004 (1)

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

1982 (1)

W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21(3), 427–431 (1982).
[Crossref]

Adair, B.

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
[Crossref]

Angel, R.

Antoniou, A.

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
[Crossref]

Asundi, A.

Blaber, J.

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
[Crossref]

Burge, J.

Burge, J. H.

Chen, H.

Chen, L. J.

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

Chen, P.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

Chen, Q.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Chen, X.

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Dai, F.

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

E, K.

K. E, A Study of High Accuracy Surface Figure Measurement Based on Phase Measuring Deflectometry (Sichuan University, 2017).

Feng, S.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Gu, G.

X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
[Crossref]

Guo, G.

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

Hausler, G.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Huang, L.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

L. Huang, C. Ng, and A. Asundi, “Dynamic three-dimensional sensing for specular surface with monoscopic fringe reflectometry,” Opt. Express 19(13), 12809–12814 (2011).
[Crossref]

Huang, Y. H.

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

Jiang, Z.

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

Jin, C.

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

Jing, H.

Kaminski, J.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Kewei, E.

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
[Crossref]

Khan, D.

D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
[Crossref]

Kim, M.

D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
[Crossref]

Knauer, M. C.

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

Korsch, D.

D. Korsch, Reflective Optics (Academic Press, 1991).

Kumar, R.

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
[Crossref]

F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
[Crossref]

Li, D.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
[Crossref]

Li, L.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

Li, M.

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
[Crossref]

Liu, Y.

Lu, C.

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Lu, Z.

B. Pan, Z. Lu, and H. Xie, “Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Laser Eng. 48(4), 469–477 (2010).
[Crossref]

Ma, M.

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Mao, X.

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Mei, T.

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Miao, H.

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

Ng, C.

Orteu, J. J.

M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).

Pan, B.

B. Pan, “Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals,” Meas. Sci. Technol. 29(8), 082001 (2018).
[Crossref]

B. Pan and B. Wang, “Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms,” Exp. Mech. 56(8), 1395–1409 (2016).
[Crossref]

B. Pan, H. Xie, and Z. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49(28), 5501–5509 (2010).
[Crossref]

B. Pan, Z. Lu, and H. Xie, “Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Laser Eng. 48(4), 469–477 (2010).
[Crossref]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16(10), 7037–7048 (2008).
[Crossref]

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Parks, R.

Peters, W. H.

W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21(3), 427–431 (1982).
[Crossref]

Qian, K.

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

B. Pan, H. Xie, Z. Wang, K. Qian, and Z. Wang, “Study on subset size selection in digital image correlation for speckle patterns,” Opt. Express 16(10), 7037–7048 (2008).
[Crossref]

Quan, C.

F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
[Crossref]

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
[Crossref]

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

Ranson, W. F.

W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21(3), 427–431 (1982).
[Crossref]

Schreie, H.

M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).

Shirazi, M.

D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
[Crossref]

Su, P.

Su, X.

Sutton, M. A.

M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).

Tang, H.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

Tang, L.

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

Tang, M.

P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
[Crossref]

Tang, Y.

Tao, T.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Tay, C. J.

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

Wang, B.

B. Pan and B. Wang, “Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms,” Exp. Mech. 56(8), 1395–1409 (2016).
[Crossref]

Wang, K.

X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
[Crossref]

Wang, L.

Wang, Q.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

M. Li, D. Li, C. Zhang, E. Kewei, Q. Wang, and H. Chen, “Modal wavefront reconstruction from slope measurements for rectangular apertures,” J. Opt. Soc. Am. A 32(11), 1916–1921 (2015).
[Crossref]

Wang, R.

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

Wang, X.

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

Wang, Z.

Wei, X.

P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
[Crossref]

Xie, H.

Xie, H. M.

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Xie, P.

P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
[Crossref]

Xiong, Z.

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

Xu, B. Q.

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

Xu, X.

X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
[Crossref]

Yang, J.

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

Yang, L.

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

Yin, W.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Zhang, C.

Zhang, T.

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

Zhao, C.

Zhong, F.

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
[Crossref]

F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
[Crossref]

Zuo, C.

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Acta Opt. Sin. (1)

H. Tang, D. Li, L. Li, P. Chen, R. Wang, and Q. Wang, “Planar Object Surface Shape Speckle Pattern Deflectometry Based on Digital Image Correlation,” Acta Opt. Sin. 39(2), 0212006 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. Zhong, R. Kumar, and C. Quan, “RGB laser speckles based 3D profilometry,” Appl. Phys. Lett. 114(20), 201104 (2019).
[Crossref]

Exp. Mech. (2)

B. Pan and B. Wang, “Digital Image Correlation with Enhanced Accuracy and Efficiency: A Comparison of Two Subpixel Registration Algorithms,” Exp. Mech. 56(8), 1395–1409 (2016).
[Crossref]

J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation Matlab Software,” Exp. Mech. 55(6), 1105–1122 (2015).
[Crossref]

IEEE Sens. J. (1)

F. Zhong, R. Kumar, and C. Quan, “A cost-effective single-shot structured light system for 3D shape measurement,” IEEE Sens. J. 19(17), 7335–7346 (2019)..
[Crossref]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[Crossref]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (2)

B. Pan, H. M. Xie, B. Q. Xu, and F. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17(6), 1615–1621 (2006).
[Crossref]

B. Pan, “Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals,” Meas. Sci. Technol. 29(8), 082001 (2018).
[Crossref]

Opt. Commun. (1)

X. Chen, C. Lu, M. Ma, X. Mao, and T. Mei, “Color-coding and phase-shift method for absolute phase measurement,” Opt. Commun. 298-299, 54–58 (2013).
[Crossref]

Opt. Eng. (2)

W. H. Peters and W. F. Ranson, “Digital imaging technique in experimental stress analysis,” Opt. Eng. 21(3), 427–431 (1982).
[Crossref]

Y. H. Huang, C. Quan, C. J. Tay, and L. J. Chen, “Shape measurement by the use of digital image correlation,” Opt. Eng. 44(8), 087011 (2005).
[Crossref]

Opt. Express (4)

Opt. Laser Eng. (6)

B. Pan, Z. Lu, and H. Xie, “Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Laser Eng. 48(4), 469–477 (2010).
[Crossref]

E. Kewei, D. Li, L. Yang, L. Yang, G. Guo, M. Li, X. Wang, T. Zhang, and Z. Xiong, “Novel method for high accuracy figure measurement of optical flat,” Opt. Laser Eng. 88, 162–166 (2017).
[Crossref]

C. Jin, D. Li, E. Kewei, M. Li, P. Chen, R. Wang, and Z. Xiong, “Phase extraction based on iterative algorithm using five-frame crossed fringes in phase measuring deflectometry,” Opt. Laser Eng. 105, 93–100 (2018).
[Crossref]

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, and Q. Chen, “Phase shifting algorithms for fringe projection profilometry: a review,” Opt. Laser Eng. 109, 23–59 (2018).
[Crossref]

Z. Jiang, K. Qian, H. Miao, J. Yang, and L. Tang, “Path-independent digital image correlation with high accuracy, speed and robustness,” Opt. Laser Eng. 65, 93–102 (2015).
[Crossref]

D. Khan, M. Shirazi, and M. Kim, “Single shot laser speckle based 3D acquisition system for medical applications,” Opt. Laser Eng. 105, 43–53 (2018).
[Crossref]

Optik (1)

X. Xu, K. Wang, and G. Gu, “An improved method for shape measurement using two-dimensional digital image correlation,” Optik 124(20), 4097–4099 (2013).
[Crossref]

Proc. SPIE (2)

M. C. Knauer, J. Kaminski, and G. Hausler, “Phase measuring Deflectometry: a new approach to measure specular free-form surfaces,” Proc. SPIE 5457, 366–376 (2004).
[Crossref]

P. Xie, M. Tang, and X. Wei, “Three-dimensional shape measurement of specular surfaces by orthogonal composite fringe reflection,” Proc. SPIE 8200, 820014 (2011).
[Crossref]

Other (3)

M. A. Sutton, J. J. Orteu, and H. Schreie, Image Correlation for Shape, Motion and Deformation Measurements Basic Concepts, Theory and Applications (Springer, 2009).

K. E, A Study of High Accuracy Surface Figure Measurement Based on Phase Measuring Deflectometry (Sichuan University, 2017).

D. Korsch, Reflective Optics (Academic Press, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Schematic of a subset before and after shifting: (a) reference image, (b) shifted image.
Fig. 2.
Fig. 2. Schematic of the SPSD test system.
Fig. 3.
Fig. 3. Schematic of the acquisition path of the mirror pixel M on the test surface.
Fig. 4.
Fig. 4. Flow chart of speckle pattern shifting deflectometry (SPSD) algorithm.
Fig. 5.
Fig. 5. Schematic of the test system.
Fig. 6.
Fig. 6. The ideal flat as the pre-known surface: (a) and (b) are the actual slope in the x and y direction calculated directly by Eq. (3), respectively, and (c) is the reconstructed surface shape from Figs. 6(a) and 6(b). (d) and (e) are the slope in the x and y direction calculated by SPSD, respectively, and (f) is the reconstructed surface shape from Figs. 6(d) and 6(e).
Fig. 7.
Fig. 7. The quadric surface as the pre-known surface: (a) and (b) are the actual slope in the x and y direction calculated directly by Eq. (3), respectively, and (c) is the reconstructed surface shape from Figs. 7(a) and 7(b). (d) and (e) are the slope in the x and y direction calculated by SPSD, respectively, and (f) is the reconstructed surface shape from Figs. 7(d) and 7(e).
Fig. 8.
Fig. 8. The displacement calculated by the DIC algorithm: (a) and (b) are displacement in the x and y direction, respectively.
Fig. 9.
Fig. 9. The error of reconstructed surface with different shifting distances of speckle pattern.
Fig. 10.
Fig. 10. Experiment setup of SPSD test system.
Fig. 11.
Fig. 11. The displacement calculated by the DIC algorithm: (a) and (b) are the displacements in the x and y direction calculated by the DIC algorithm when the speckle pattern is shifted in the x direction, respectively. (c) and (d) are the displacements in the x and y direction calculated by the DIC algorithm when the speckle pattern is shifted in the y direction, respectively.
Fig. 12.
Fig. 12. The measurement results of the acrylic plastic plate: (a) and (b) are the slope in the x and y direction calculated by SPSD, respectively, and (c) is the reconstructed surface shape using SPSD. (d) and (e) are the slope in the x and y direction calculated by PMD, respectively, and (f) is the reconstructed surface shape using PMD (Piston, tip and tilt terms of the surface shape are removed.).
Fig. 13.
Fig. 13. The comparison of 4-37 Zernike polynomials coefficients.
Fig. 14.
Fig. 14. The measurement results of the wafer: (a) and (b) are the slope in the x and y direction calculated by SPSD, respectively, and (c) is the reconstructed surface shape using SPSD. (d) and (e) are the slope in the x and y direction calculated by PMD, respectively, and (f) is the reconstructed surface shape using PMD (Piston, tip and tilt terms of the surface shape are removed.).
Fig. 15.
Fig. 15. The comparison of 4-37 Zernike polynomials coefficients.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

x i = x i + d u + u x Δ x + u y Δ y y j = y j + d v + v x Δ x + v y Δ y ,
C Z N C C = i = 1 M j = 1 N [ f ( x i , y j ) f ¯ ] × [ g ( x i , y j ) g ¯ ] i = 1 M j = 1 N [ f ( x i , y j ) f ¯ ] 2 × i = 1 M j = 1 N [ g ( x i , y j ) g ¯ ] 2 ,
tan α x ( x m , y m ) = x s x m d m 2 s + x c x m d m 2 c z m 2 s W ( x m , y m ) d m 2 s + z m 2 c W ( x m , y m ) d m 2 c , tan α y ( x m , y m ) = y s y m d m 2 s + y c y m d m 2 c z m 2 s W ( x m , y m ) d m 2 s + z m 2 c W ( x m , y m ) d m 2 c ,
x s ( i , j ) = x s 0 + n l i y s ( i , j ) = y s 0 + n l j ,
z m 2 c d f K n ¯ l c ,
n R O U N D [ n ¯ l c ( z m2c + z m2s ) l f ] ,

Metrics