Abstract

Plasmonic surface lattice resonances (SLRs) supported by metal nanoparticle arrays exhibit narrow linewidths and enhanced localized fields and thus are attractive in diverse applications including nanolasers, biochemical sensors and nonlinear optics. However, it has been shown that these SLRs have much worse performance in a less symmetric environment, hindering their practical applications. Here, we propose a novel type of narrow SLRs that is supported by metal-insulator-metal nanopillar arrays and that has better performance in a less symmetric dielectric environment. When the dielectric environment is as asymmetric as the air/polymer environment with a refractive index contrast of 1.0/1.52, the proposed SLRs have high quality factors of 62 under normalincidence and of 147 under oblique incidence in the visible regime. We attribute these new SLRs to Fano resonance between an in-plane dipole and an out-of-plane quadrupole (or dipole) that are respectively supported by the two metal ridges under normal (or oblique) incidence. We also show that the resonance wavelength can be tuned by varying the geometric sizes or by changing the angle of incidence. By doing this, we clarify the conditions for the formation of the proposed SLRs and illustrate their attractive merits in sensing applications. We expect that this new SLR can open up applications in asymmetric dielectric environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Necessary conditions for out-of-plane lattice plasmons in nanoparticle arrays

Gordon Han Ying Li and Guangyuan Li
J. Opt. Soc. Am. B 36(4) 805-810 (2019)

Ultra-strong polarization dependence of surface lattice resonances with out-of-plane plasmon oscillations

Mikko J. Huttunen, Ksenia Dolgaleva, Päivi Törmä, and Robert W. Boyd
Opt. Express 24(25) 28279-28289 (2016)

Giant distributed optical-field enhancements from Mie-resonant lattice surface modes in dielectric metasurfaces

Xiaowei Wang, Leonard C. Kogos, and Roberto Paiella
OSA Continuum 2(1) 32-42 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
    [Crossref] [PubMed]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [Crossref]
  3. G. Lilley, M. Messner, and K. Unterrainer, “Improving the quality factor of the localized surface plasmon resonance,” Opt. Mater. Express 5, 2112–2120 (2015).
    [Crossref]
  4. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
    [Crossref] [PubMed]
  5. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
    [Crossref] [PubMed]
  6. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
    [Crossref] [PubMed]
  7. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
    [Crossref]
  8. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
    [Crossref]
  9. M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
    [Crossref]
  10. W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
    [Crossref]
  11. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
    [Crossref] [PubMed]
  12. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
    [Crossref] [PubMed]
  13. F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
    [Crossref] [PubMed]
  14. A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
    [Crossref] [PubMed]
  15. M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
    [Crossref]
  16. R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
    [Crossref] [PubMed]
  17. L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
    [Crossref] [PubMed]
  18. J. Chen, W. Fan, T. Zhang, C. Tang, X. Chen, J. Wu, D. Li, and Y. Yu, “Engineering the magnetic plasmon resonances of metamaterials for high-quality sensing,” Opt. Express 25, 3675–3681 (2017).
    [Crossref] [PubMed]
  19. B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
    [Crossref] [PubMed]
  20. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6, 423–427 (2011).
    [Crossref] [PubMed]
  21. B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
    [Crossref]
  22. G. H. Y. Li and G. Li, “Necessary conditions for out-of-plane lattice plasmons in nanoparticle arrays,” J. Opt. Soc. Am. B 36, 805–810 (2019).
    [Crossref]
  23. D. Khlopin, F. Laux, W. P. Wardley, J. Martin, G. A. Wurtz, J. Plain, N. Bonod, A. V. Zayats, W. Dickson, and D. Gérard, “Lattice modes and plasmonic linewidth engineering in gold and aluminum nanoparticle arrays,” J. Opt. Soc. Am. B 34, 691–700 (2017).
    [Crossref]
  24. I. Ragheb, M. Braik, A. Mezeghrane, L. Boubekeur-Lecaque, A. Belkhir, and N. Felidj, “Lattice plasmon modes in an asymmetric environment: from far-field to near-field optical properties,” J. Opt. Soc. Am. B 36, E36–E41(2019).
    [Crossref]
  25. B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
    [Crossref]
  26. S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
    [Crossref]
  27. S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
    [Crossref]
  28. V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
    [Crossref] [PubMed]
  29. A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
    [Crossref] [PubMed]
  30. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [Crossref]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  32. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
    [Crossref] [PubMed]
  33. V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
    [Crossref]
  34. Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
    [Crossref] [PubMed]
  35. W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
    [Crossref]
  36. A. Yu, W. Li, Y. Wang, and T. Li, “Surface lattice resonances based on parallel coupling in metal-insulator-metal stacks,” Opt. Express 26, 20695–20707 (2018).
    [Crossref] [PubMed]
  37. J. Song and W. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano Lett. 18, 4409–4416 (2018).
    [Crossref] [PubMed]
  38. W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
    [Crossref] [PubMed]

2019 (2)

2018 (8)

A. Yu, W. Li, Y. Wang, and T. Li, “Surface lattice resonances based on parallel coupling in metal-insulator-metal stacks,” Opt. Express 26, 20695–20707 (2018).
[Crossref] [PubMed]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
[Crossref]

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
[Crossref]

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

J. Song and W. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano Lett. 18, 4409–4416 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (2)

S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
[Crossref]

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

2015 (4)

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

G. Lilley, M. Messner, and K. Unterrainer, “Improving the quality factor of the localized surface plasmon resonance,” Opt. Mater. Express 5, 2112–2120 (2015).
[Crossref]

2014 (2)

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

2013 (3)

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

2012 (2)

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

2011 (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6, 423–427 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (3)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

2005 (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

2004 (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

1995 (1)

1993 (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Auton, G.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

Auton, G. H.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

Barnes, W. L.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

Bedu, F.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

Belkhir, A.

Bonod, N.

Boubekeur-Lecaque, L.

Braik, M.

Buchholz, D. B.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Butet, J.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Campbell, Q.

S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
[Crossref]

Chang, R. P. H.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Chang, S.-H.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

Chang, Y.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

Chen, J.

Chen, X.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Chung, H.-C.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Czaplicki, R.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Danilov, A.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

de Dood, M. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Deeb, C.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Dickson, W.

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Dridi, M.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Fan, W.

Felidj, N.

Gaylord, T. K.

Geluk, E. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Gérard, D.

Gert, W.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Grann, E. B.

Grigorenko, A. N.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Halpin, A.

M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
[Crossref]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Hoang, T. B.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Hua, Y.

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

Huntington, M. D.

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

Huttunen, M. J.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kabashin, A. V.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[Crossref] [PubMed]

Kauranen, M.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Ketterson, J. B.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Khlopin, D.

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Kiviniemi, A.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Kravets, V. G.

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Kuittinen, M.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Laux, F.

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Le-Van, Q.

M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
[Crossref]

Li, D.

Li, G.

Li, G. H. Y.

Li, S.-Q.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Li, T.

Li, W.

Lilley, G.

Lin, L.

B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
[Crossref]

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref] [PubMed]

Markel, V. A.

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]

Marshall, O. P.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

Martin, J.

Martin, O. J. F.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Messner, M.

Mezeghrane, A.

Mikkelsen, M. H.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Mirkin, C. A.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Moharam, M. G.

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Ocola, L. E.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Odom, T. W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6, 423–427 (2011).
[Crossref] [PubMed]

Ozerov, I.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

Plain, J.

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Pommet, D. A.

Ragheb, I.

Rajeeva, B. B.

B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
[Crossref]

Ramezani, M.

M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
[Crossref]

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

Rivas, J. G.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

Rodriguez, F. J.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

Ross, M. B.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

Sadeghi, S. M.

S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
[Crossref]

Sakoda, K.

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Schatz, G. C.

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

Schedin, F.

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

V. G. Kravets, F. Schedin, A. V. Kabashin, and A. N. Grigorenko, “Sensitivity of collective plasmon modes of gold nanoresonators to local environment,” Opt. Lett. 35, 956–958 (2010).
[Crossref] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Song, J.

J. Song and W. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano Lett. 18, 4409–4416 (2018).
[Crossref] [PubMed]

Stolt, T.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

Tang, C.

Thackray, B. D.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

Thomas, P. A.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

Törmä, P.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

Tselikov, G.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

Tseng, C.-B.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

Unterrainer, K.

Väkeväinen, A. I.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

van Beijnum, F.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

van Exter, M. P.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

van Veldhoven, P. J.

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

Vartiainen, I.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Wang, S.-M.

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

Wang, W.

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

Wang, Y.

Wardley, W. P.

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Wing, W. J.

S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
[Crossref]

Wu, F.

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

Wu, J.

Wurtz, G. A.

Yang, A.

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

Yu, A.

Yu, Y.

Zang, X.

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

Zayats, A. V.

Zhang, T.

Zheng, Y.

B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
[Crossref]

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref] [PubMed]

Zhou, W.

J. Song and W. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano Lett. 18, 4409–4416 (2018).
[Crossref] [PubMed]

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6, 423–427 (2011).
[Crossref] [PubMed]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
[Crossref] [PubMed]

ACS Nano (1)

Y.-C. Chang, S.-M. Wang, H.-C. Chung, C.-B. Tseng, and S.-H. Chang, “Hybridization of localized and guided modes in 2d metal-insulator-metal nanocavity arrays,” ACS Nano 6, 3390–3396 (2012).
[Crossref] [PubMed]

ACS Photon. (1)

B. D. Thackray, V. G. Kravets, F. Schedin, G. Auton, P. A. Thomas, and A. N. Grigorenko, “Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments,” ACS Photon. 1, 1116–1126 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[Crossref]

Appl. Phys. Lett. (2)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett. 93, 181108 (2008).
[Crossref]

S.-Q. Li, W. Zhou, D. B. Buchholz, J. B. Ketterson, L. E. Ocola, K. Sakoda, and R. P. H. Chang, “Ultra-sharp plasmonic resonances from monopole optical nanoantenna phased arrays,” Appl. Phys. Lett. 104, 231101 (2014).
[Crossref]

Biosens. Bioelectron. (1)

A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko, and A. V. Kabashin, “Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications,” Biosens. Bioelectron. 104, 102–112 (2018).
[Crossref] [PubMed]

Chem. Rev. (1)

V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic surface lattice resonances: A review of properties and applications,” Chem. Rev. 118, 5912–5951 (2018).
[Crossref] [PubMed]

J. App. Phys. (1)

S. M. Sadeghi, W. J. Wing, and Q. Campbell, “Tunable plasmonic-lattice mode sensors with ultrahigh sensitivities and figure-of-merits,” J. App. Phys. 119, 244503 (2016).
[Crossref]

J. Chem. Phys. (2)

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004).
[Crossref] [PubMed]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871 (2004).
[Crossref] [PubMed]

J. Mod. Opt. (1)

V. A. Markel, “Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure,” J. Mod. Opt. 40, 2281–2291 (1993).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (3)

J. Phys. Chem. C (2)

W. Zhou, J. Y. Suh, Y. Hua, and T. W. Odom, “Observation of absorption-dominated bonding dark plasmon mode from metal-insulator-metal nanodisk arrays fabricated by nanospherical-lens lithography,” J. Phys. Chem. C 117, 2541–2546 (2013).
[Crossref]

M. B. Ross, C. A. Mirkin, and G. C. Schatz, “Optical properties of one-, two-, and three-dimensional arrays of plasmonic nanostructures,” J. Phys. Chem. C 120, 816–830 (2016).
[Crossref]

J. Phys. Chem. Lett. (1)

W. Zhou, Y. Hua, M. D. Huntington, and T. W. Odom, “Delocalized lattice plasmon resonances show dispersive quality factors,” J. Phys. Chem. Lett. 3, 1381–1385 (2012).
[Crossref] [PubMed]

Mater. Today (1)

W. Wang, M. Ramezani, A. I. Väkeväinen, P. Törmä, J. G. Rivas, and T. W. Odom, “The rich photonic world of plasmonic nanoparticle arrays,” Mater. Today 21, 303–314 (2018).
[Crossref]

Nano Lett. (3)

R. Czaplicki, A. Kiviniemi, M. J. Huttunen, X. Zang, T. Stolt, I. Vartiainen, J. Butet, M. Kuittinen, O. J. F. Martin, and M. Kauranen, “Less is more: Enhancement of second-harmonic generation from metasurfaces by reduced nanoparticle density,” Nano Lett. 18, 7709–7714 (2018).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15, 3519–3523 (2015).
[Crossref] [PubMed]

J. Song and W. Zhou, “Multiresonant composite optical nanoantennas by out-of-plane plasmonic engineering,” Nano Lett. 18, 4409–4416 (2018).
[Crossref] [PubMed]

Nano Res. (1)

B. B. Rajeeva, L. Lin, and Y. Zheng, “Design and applications of lattice plasmon resonances,” Nano Res. 11, 4423–4440 (2018).
[Crossref]

Nanoscale (1)

L. Lin and Y. Zheng, “Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors,” Nanoscale 7, 12205–12214 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, “Real-time tunable lasing from plasmonic nanocavity arrays,” Nat. Commun. 6, 6939 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nat. Nanotechnol. 8, 506–511 (2013).
[Crossref] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotechnol. 6, 423–427 (2011).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (5)

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008).
[Crossref] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101, 143902 (2008).
[Crossref] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 80, 4721–4724 (2000).
[Crossref]

F. van Beijnum, P. J. van Veldhoven, E. J. Geluk, M. J. de Dood, W. Gert, and M. P. van Exter, “Surface plasmon lasing observed in metal hole arrays,” Phys. Rev. Lett. 110, 206802 (2013).
[Crossref] [PubMed]

M. Ramezani, Q. Le-Van, and A. Halpin, “Nonlinear emission of molecular ensembles strongly coupled to plasmonic lattices with structural imperfections,” Phys. Rev. Lett. 121, 243904 (2018).
[Crossref]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the MIM nanopillar array in asymmetric dielectric environment. (b) Reflectance, absorbance and transmittance spectra of the structure under normal incidence with polarization in x direction.
Fig. 2
Fig. 2 (a)–(c) Electric field direction (in arrows) and (d)–(f) intensity (in color) maps at y = 0 plane of the MIM nanoparticle array in the asymmetric air/polymer dielectric environment. “+” and “−” indicate charge distributions. The structure is outlined by lines. The results were obtained under normal incidence with x polarization at (a)(d) λ = 663 nm, (b)(e) λ = 694 nm, and (c)(f) λ = 728 nm, respectively.
Fig. 3
Fig. 3 (a) Reflectance spectra, (b) resonance wavelengths, and (c) quality factors of the proposed SLRs excited under normal incidence and in different dielectric environments. (d)–(i) Electric field intensity (in color) and vector (in arrows) maps for the left (middle panel) and right (bottom panel) branches of Fano-shaped reflectance dips for nsup = 1.1, nsup = 1.33, and nsup = 1.52 (symmetric dielectric environment).
Fig. 4
Fig. 4 Reflectance spectra as geometric parameters or incidence angle varies: (a) period, (b) side length, (c) bottom metal ridge’s height, (d) central insulator ridge’s height, (e) top metal ridge’s height, and (f) incidence angle.
Fig. 5
Fig. 5 Electric field intensity (in color) and vector (in arrows) maps at the wavelengths of the reflectance dips in Figs. 4(c)–4(e), corresponding to the top, middle, and bottom panels, respectively. Since for small values of hmb, hd and hmt, the reflection dips in Figs. 4(c)–4(e) are not pronounced, the wavelengths for (a), (f), and (k) are set to be λ = 687.1 nm, 695.7 nm and 688.2 nm, respectively.
Fig. 6
Fig. 6 (a) Resonance wavelengths and (b) quality factors of the left and right branches of reflectance dips for the SLRs in asymmetric environment as functions of the incidence angle. (c) Reflectance spectra for the SLRs at θ = 1° and a = 3°.
Fig. 7
Fig. 7 (a)–(c),(e)–(g) Electric field intensity (in color) and vector (in arrows) maps, and (d)(h) Poynting vectors for wavelengths of the left (λL = 681 nm) and right (λR = 707 nm) branches of reflectance dips at θ = 3°. “+” and “−” indicate charge distributions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α * = 1 1 / α S ,

Metrics