Abstract

We present a photonic compressive receiver, where the frequency information of the captured signal is directly mapped to the time intervals between compressed pulses for multiple microwave frequency measurement. The theoretical measurement error, multiple-frequency resolution and effective measurement range are derived. The effects of dispersion deviation and the electrical bandwidth are also discussed. The theoretical results are verified by the measured pulse waveforms and frequency-time mapping relationship. A photonic compressive receiver with an effective measurement range of 42 GHz, a multiple-frequency resolution of 1.2 GHz, a measurement accuracy of 88 MHz and a signal interception period of 27 ns is experimentally obtained.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microwave multi-frequency measurement based on an optical frequency comb and a photonic channelized receiver

Jian Shen, Shibao Wu, Dan Li, and Jia Liu
Appl. Opt. 58(29) 8101-8107 (2019)

Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter

Hengyun Jiang, David Marpaung, Mattia Pagani, Khu Vu, Duk-Yong Choi, Steve J. Madden, Lianshan Yan, and Benjamin J. Eggleton
Optica 3(1) 30-34 (2016)

Instantaneous microwave frequency measurement using optical carrier suppression based DC power monitoring

Songnian Fu, Ming Tang, and Perry Shum
Opt. Express 19(24) 24712-24717 (2011)

References

  • View by:
  • |
  • |
  • |

  1. F. Neri, Introduction to electronic defense systems (SciTech Publishing, 2006).
  2. L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
    [Crossref]
  3. J. Tsui, Microwave receivers with electronic warfare applications (The Institution of Engineering and Technology, 2005).
  4. T. A. Nguyen, E. H. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).
    [Crossref]
  5. W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).
  6. J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
    [Crossref]
  7. Y. Ma, D. Liang, D. Peng, Z. Zhang, Y. Zhang, S. Zhang, and Y. Liu, “Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters,” Opt. Express 25(3), 2355–2368 (2017).
    [Crossref]
  8. F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
    [Crossref]
  9. J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
    [Crossref]
  10. Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
    [Crossref]
  11. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
    [Crossref]
  12. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).
    [Crossref]
  13. C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
    [Crossref]
  14. L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
    [Crossref]
  15. T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a fourier domain mode locked optoelectronic oscillator,” Opt. Express 26(26), 33582–33591 (2018).
    [Crossref]
  16. H. G. de Chatellus, L. R. Cortés, and J. Azańa, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).
    [Crossref]
  17. R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).
  18. R. E. Saperstein, N. Alić, D. Panasenko, R. Rokitski, and Y. Fainman, “Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses,” J. Opt. Soc. Am. B 22(11), 2427–2436 (2005).
    [Crossref]
  19. Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
    [Crossref]
  20. S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
    [Crossref]
  21. Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26(26), 34373–34383 (2018).
    [Crossref]
  22. M. A. Muriel, J. Azańa, and A. Carballar, “Real-time fourier transformer based on fiber gratings,” Opt. Lett. 24(1), 1–3 (1999).
    [Crossref]

2018 (3)

2017 (3)

2016 (2)

2014 (1)

2012 (1)

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

2011 (1)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

2009 (3)

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
[Crossref]

2008 (1)

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

2006 (1)

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

2005 (1)

2002 (1)

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

1999 (1)

1985 (1)

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

Abielmona, S.

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
[Crossref]

Aditya, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Alic, N.

Azana, J.

Bauman, R.

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

Bui, L.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

Caloz, C.

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
[Crossref]

Carballar, A.

Chan, E. H.

Chen, H.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Chen, J.

Chen, L.

Chi, H.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Choi, D.-Y.

Cortés, L. R.

Dai, T.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

de Chatellus, H. G.

Dong, J.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Duan, Y.

Eggleton, B. J.

Electronic, J.

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

Emami, H.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

Fainman, Y.

Fu, H.

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

Fu, S.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Gupta, S.

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
[Crossref]

Hao, T.

He, S.

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

Hunter, D. B.

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Jiang, H.

Jiang, J.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Jiang, X.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Jin, Z.

Li, M.

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a fourier domain mode locked optoelectronic oscillator,” Opt. Express 26(26), 33582–33591 (2018).
[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Li, W.

Li, X.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Li, Y.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Li, Z.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Liang, D.

Lin, C.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Liu, Y.

Ma, Y.

Madden, S. J.

Marpaung, D.

Minasian, R. A.

Mitchell, A.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

Muriel, M. A.

Neri, F.

F. Neri, Introduction to electronic defense systems (SciTech Publishing, 2006).

Nguyen, L. V.

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

Nguyen, T. A.

Pagani, M.

Panasenko, D.

Peng, D.

Rokitski, R.

Saperstein, R. E.

Sarkhosh, N.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

Shao, H.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Shi, F.

Shum, P. P.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Sullivan, W. B.

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

Tang, J.

Tsui, J.

J. Tsui, Microwave receivers with electronic warfare applications (The Institution of Engineering and Technology, 2005).

Vu, K.

Wang, C.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Wang, G.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Wang, X.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Wu, G.

Yan, L.

Yang, J.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Yao, J.

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Ye, C.

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

Yu, H.

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Zhang, C.

Zhang, S.

Zhang, X.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).
[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhou, F.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Zhou, H.

Zhou, J.

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

Zhou, L.

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

Zhou, X.

Zhu, K.

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

Zhu, N.

IEEE Microw. Wireless Compon. Lett. (1)

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).
[Crossref]

IEEE Photonics J. (1)

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (5)

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).
[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).
[Crossref]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).
[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).
[Crossref]

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Journal of Electronic Defense (1)

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

Microwave Journal (1)

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

Opt. Commun. (1)

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

Other (2)

F. Neri, Introduction to electronic defense systems (SciTech Publishing, 2006).

J. Tsui, Microwave receivers with electronic warfare applications (The Institution of Engineering and Technology, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of the proposed photonic compressive receiver. MZM: Mach-Zehnder Modulator; (b) The time domain diagram of the generated linearly chirped optical pulse train’s frequency components; (c) The time domain diagram of the modulated signal train’s frequency components; (d) The time domain diagram of the compressed signal train’s frequency components.
Fig. 2.
Fig. 2. The equivalent procedure of the proposed photonic compressive receiver.
Fig. 3.
Fig. 3. Schematic of the relationship between the theoretical frequency measurement range, measurement error, measurement resolution and $\ddot {\Phi }$. ($\left |\ddot {\Phi } \right |< \left |{\ddot {\Phi }}' \right |< \left |{\ddot {\Phi }}'' \right |$)
Fig. 4.
Fig. 4. Experimental setup of the proposed photonic compressive receiver. MLL: Mode-locked laser; SMF: Single-mode fiber; EDFA: Erbium-doped optical fiber amplifier; MZM: Mach-Zehnder modulator; DCF: Dispersion compensating fiber; AMP: Electric amplifier; OSC: Oscilloscope.
Fig. 5.
Fig. 5. The measured single pulse waveform with different dispersion matching. (a) $\left | \Delta \ddot {\Phi } \right |=53.7 \ ps/nm$; (b) $\left | \Delta \ddot {\Phi } \right |=5.9 \ ps/nm$.
Fig. 6.
Fig. 6. The measured waveform with the single-tone input signals of 0.6 GHz (black solid), 4 GHz (red dot) and 8 GHz (blue dash).
Fig. 7.
Fig. 7. (a) The measured and theoretical frequency-time mapping from 0.6 GHz to 42 GHz; (b) Measurement errors at different frequencies.
Fig. 8.
Fig. 8. (a) The measured waveform for two-tone input signal of 3 GHz and 4.2 GHz; (b) The measured waveform for two-tone input signal of 3 GHz and 10 GHz.

Tables (1)

Tables Icon

Table 1. Performance Comparison of Microwave Multi-Frequency Measurement Systems

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

p ( t ) = [ e j ( ω 0 t + 1 2 u 0 t 2 ) p e ( t ) ] k = δ ( t k T s ) ,
p M ( t ) = e j ( ω 0 t + 1 2 u 0 t 2 ) p e ( t ) cos [ Δ φ 2 + β π v I ( t ) ] = p s ( t ) { cos ( Δ φ 2 ) cos [ β π v I ( t ) ] sin ( Δ φ 2 ) sin [ β π v I ( t ) ] } ,
p M ( t ) β π p s ( t ) v I ( t ) .
r ( t ) = p M ( t ) exp ( j t 2 / 2 Φ ¨ ) = p M ( τ ) exp [ j ( t τ ) 2 2 Φ ¨ ] d τ exp ( j t 2 2 Φ ¨ ) { V I ( t Φ ¨ ω 0 ) P E ( t Φ ¨ ) exp [ j t 2 2 ( u 0 Φ ¨ + 1 ) Φ ¨ ] } ,
r ( t ) exp ( j t 2 2 Φ ¨ ) { [ δ ( t Φ ¨ ω 0 ± Φ ¨ ω 1 ) + δ ( t Φ ¨ ω 0 ± Φ ¨ ω 2 ) ] P E ( t Φ ¨ ) exp [ j t 2 2 ( u 0 Φ ¨ + 1 ) Φ ¨ ] } .
Δ t i = u ω i = 2 | Φ ¨ | ω i ,
τ 0 2 π f r | Δ Φ ¨ | .
{ f r a n g e = [ τ 1 4 π | Φ ¨ | , min { T s τ 1 4 π | Φ ¨ | , β M } ] , δ f = δ τ 4 π | Φ ¨ | , Δ f = τ 1 2 π | Φ ¨ | ,
r ( t ) = p M ( t ) exp ( j t 2 2 Φ ¨ ) = p M ( τ ) exp [ j ( t τ ) 2 2 Φ ¨ ] d τ ,
p M ( t ) β π p s ( t ) v I ( t ) = β π exp ( j ω 0 t + 1 2 j u 0 t 2 ) p e ( t ) v I ( t ) .
r ( t ) exp ( j t 2 2 Φ ¨ ) exp ( j ω 0 τ ) p e ( τ ) v I ( τ ) exp ( j t τ Φ ¨ ) exp ( j u 0 τ 2 2 + j τ 2 2 Φ ¨ ) d τ = exp ( j t 2 2 Φ ¨ ) F { exp ( j ω 0 τ ) p e ( τ ) v I ( τ ) exp [ j τ 2 2 Φ ¨ / Φ ¨ ( u 0 Φ ¨ + 1 ) ( u 0 Φ ¨ + 1 ) ] } | ω = t Φ ¨ exp ( j t 2 2 Φ ¨ ) { δ ( ω ω 0 ) V I ( ω ) P E ( ω ) exp [ j ω 2 Φ ¨ / Φ ¨ ( u 0 Φ ¨ + 1 ) ( u 0 Φ ¨ + 1 ) 2 ] } | ω { = } t Φ ¨ = exp ( j t 2 2 Φ ¨ ) { V I ( t Φ ¨ ω 0 ) P E ( t Φ ¨ ) exp [ j t 2 2 ( u 0 Φ ¨ + 1 ) Φ ¨ ] } .

Metrics