F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a fourier domain mode locked optoelectronic oscillator,” Opt. Express 26(26), 33582–33591 (2018).

[Crossref]

Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26(26), 34373–34383 (2018).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

Y. Ma, D. Liang, D. Peng, Z. Zhang, Y. Zhang, S. Zhang, and Y. Liu, “Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters,” Opt. Express 25(3), 2355–2368 (2017).

[Crossref]

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).

[Crossref]

H. G. de Chatellus, L. R. Cortés, and J. Azańa, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).

[Crossref]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).

[Crossref]

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

H. G. de Chatellus, L. R. Cortés, and J. Azańa, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).

[Crossref]

M. A. Muriel, J. Azańa, and A. Carballar, “Real-time fourier transformer based on fiber gratings,” Opt. Lett. 24(1), 1–3 (1999).

[Crossref]

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a fourier domain mode locked optoelectronic oscillator,” Opt. Express 26(26), 33582–33591 (2018).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

F. Neri, Introduction to electronic defense systems (SciTech Publishing, 2006).

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).

[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

J. Tsui, Microwave receivers with electronic warfare applications (The Institution of Engineering and Technology, 2005).

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

Z. Li, C. Wang, M. Li, H. Chi, X. Zhang, and J. Yao, “Instantaneous microwave frequency measurement using a special fiber bragg grating,” IEEE Microw. Wireless Compon. Lett. 21(1), 52–54 (2011).

[Crossref]

F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, and X. Zhang, “Photonic multiple microwave frequency measurement based on frequency-to-time mapping,” IEEE Photonics J. 10(2), 1–7 (2018).

[Crossref]

J. Zhou, S. Fu, S. Aditya, P. P. Shum, and C. Lin, “Instantaneous microwave frequency measurement using photonic technique,” IEEE Photonics Technol. Lett. 21(15), 1069–1071 (2009).

[Crossref]

L. V. Nguyen and D. B. Hunter, “A photonic technique for microwave frequency measurement,” IEEE Photonics Technol. Lett. 18(10), 1188–1190 (2006).

[Crossref]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photonics Technol. Lett. 20(18), 1521–1523 (2008).

[Crossref]

C. Ye, H. Fu, K. Zhu, and S. He, “All-optical approach to microwave frequency measurement with large spectral range and high accuracy,” IEEE Photonics Technol. Lett. 24(7), 614–616 (2012).

[Crossref]

L. V. Nguyen, “Microwave photonic technique for frequency measurement of simultaneous signals,” IEEE Photonics Technol. Lett. 21(10), 642–644 (2009).

[Crossref]

S. Abielmona, S. Gupta, and C. Caloz, “Compressive receiver using a crlh-based dispersive delay line for analog signal processing,” IEEE Trans. Microwave Theory Tech. 57(11), 2617–2626 (2009).

[Crossref]

W. B. Sullivan and J. Electronic, “Instantaneous frequency measurement receivers for maritime patrol,” Journal of Electronic Defense 25(10), 55–62 (2002).

R. Bauman, “Digital instantaneous frequency measurement for ew receivers,” Microwave Journal 28, 147–149 (1985).

J. Jiang, H. Shao, X. Li, Y. Li, T. Dai, G. Wang, J. Yang, X. Jiang, and H. Yu, “Photonic-assisted microwave frequency measurement system based on a silicon orr,” Opt. Commun. 382, 366–370 (2017).

[Crossref]

Y. Ma, D. Liang, D. Peng, Z. Zhang, Y. Zhang, S. Zhang, and Y. Liu, “Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters,” Opt. Express 25(3), 2355–2368 (2017).

[Crossref]

Y. Duan, L. Chen, H. Zhou, X. Zhou, C. Zhang, and X. Zhang, “Ultrafast electrical spectrum analyzer based on all-optical fourier transform and temporal magnification,” Opt. Express 25(7), 7520–7529 (2017).

[Crossref]

T. Hao, J. Tang, W. Li, N. Zhu, and M. Li, “Microwave photonics frequency-to-time mapping based on a fourier domain mode locked optoelectronic oscillator,” Opt. Express 26(26), 33582–33591 (2018).

[Crossref]

Z. Jin, G. Wu, F. Shi, and J. Chen, “Equalization based inter symbol interference mitigation for time-interleaved photonic analog-to-digital converters,” Opt. Express 26(26), 34373–34383 (2018).

[Crossref]

M. A. Muriel, J. Azańa, and A. Carballar, “Real-time fourier transformer based on fiber gratings,” Opt. Lett. 24(1), 1–3 (1999).

[Crossref]

T. A. Nguyen, E. H. Chan, and R. A. Minasian, “Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique,” Opt. Lett. 39(8), 2419–2422 (2014).

[Crossref]

H. G. de Chatellus, L. R. Cortés, and J. Azańa, “Optical real-time fourier transformation with kilohertz resolutions,” Optica 3(1), 1–8 (2016).

[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic brillouin filter,” Optica 3(1), 30–34 (2016).

[Crossref]

F. Neri, Introduction to electronic defense systems (SciTech Publishing, 2006).

J. Tsui, Microwave receivers with electronic warfare applications (The Institution of Engineering and Technology, 2005).