Abstract

A record-large product of data rate and transmission distance in quantum-noise-assisted cipher systems for physical layer security of fiber-optic transmission was demonstrated. The cipher system is based on symmetric-key direct-data encryption utilizing signal masking by quantum (shot) noise. The encryption is achieved by 216-level phase randomization of quadrature phase-shift keying data signal, resulting in 48-Gbit/s dual polarization Y-00 cipher with 218 phase levels. Successful transmission of the Y-00 cipher over 400- and 800-km standard single-mode fibers was achieved without significant negative impact on transmission quality. The product of the data rate and distance was 40 Gbit/s (net rate) × 800 km = 32,000 Gbit/s·km. The system achieves masking of 217 phase levels by shot noise, which promises irreducible and unchanged security based on the quantum nature of coherent light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels

Ken Tanizawa and Fumio Futami
Opt. Express 27(2) 1071-1079 (2019)

Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km

Masato Yoshida, Toshihiko Hirooka, Keisuke Kasai, and Masataka Nakazawa
Opt. Express 24(1) 652-661 (2016)

Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system

Fumio Futami, Kyle Guan, Jurgen Gripp, Kentaro Kato, Ken Tanizawa, Sethumadhavan Chandrasekhar, and Peter J. Winzer
Opt. Express 25(26) 33338-33349 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175, page 8 (1984).
  2. G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
    [Crossref]
  3. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
    [Crossref]
  4. O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
    [Crossref]
  5. F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, C. Sethumadhavan, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
    [Crossref]
  6. C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
    [Crossref]
  7. G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.
  8. K. Tanizawa and F. Futami, “Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels,” Opt. Express 27(2), 1071–1079 (2019).
    [Crossref]
  9. K. Tanizawa and F. Futami, “Digital Coherent 20-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.
  10. M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
    [Crossref]
  11. M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
    [Crossref]
  12. O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
    [Crossref]
  13. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref]
  14. K. Tanizawa and F. Futami, “Digital Coherent 48-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Based on QPSK Data Modulation,” in 24th Opto-Electronics and Communications Conference (OECC)2019, paper WP4-B13.

2019 (1)

2017 (2)

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, C. Sethumadhavan, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

2016 (1)

2008 (1)

2007 (1)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

2005 (3)

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

2003 (1)

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

Barbosa, G.

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175, page 8 (1984).

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175, page 8 (1984).

Corndorf, E.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

Fuse, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Futami, F.

K. Tanizawa and F. Futami, “Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels,” Opt. Express 27(2), 1071–1079 (2019).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, C. Sethumadhavan, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

K. Tanizawa and F. Futami, “Digital Coherent 20-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

K. Tanizawa and F. Futami, “Digital Coherent 48-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Based on QPSK Data Modulation,” in 24th Opto-Electronics and Communications Conference (OECC)2019, paper WP4-B13.

Gripp, J.

Guan, K.

Hirano, T.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

Hirooka, T.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
[Crossref]

Hirota, O.

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Ichikawa, T.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

Kanter, G. S.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.

Kasai, K.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
[Crossref]

Kato, K.

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, C. Sethumadhavan, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Kumar, P.

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

Liang, C.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

Lipa, R. A.

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.

Nakazawa, M.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
[Crossref]

Namiki, R.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

Reilly, D.

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.

Savory, S. J.

Sethumadhavan, C.

Sohma, M.

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Tanizawa, K.

K. Tanizawa and F. Futami, “Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels,” Opt. Express 27(2), 1071–1079 (2019).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, C. Sethumadhavan, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

K. Tanizawa and F. Futami, “Digital Coherent 48-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Based on QPSK Data Modulation,” in 24th Opto-Electronics and Communications Conference (OECC)2019, paper WP4-B13.

K. Tanizawa and F. Futami, “Digital Coherent 20-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

Wang, S. X.

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.

Winzer, P. J.

Yoshida, M.

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
[Crossref]

Yuen, H. P.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Nakazawa, M. Yoshida, T. Hirooka, K. Kasai, T. Hirano, T. Ichikawa, and R. Namiki, “QAM Quantum Noise Stream Cipher Transmission Over 100 km with Continuous Variable Quantum Key Distribution,” IEEE J. Quantum Electron. 53(4), 8000316 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (1)

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum Noise Protected Data Encryption in a WDM Network,” IEEE Photon. Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

Opt. Express (4)

Phys. Rev. A (3)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

O. Hirota, M. Sohma, M. Fuse, and K. Kato, “Quantum stream cipher by Yuen 2000 protocol: Design and experiment by intensity modulation Scheme,” Phys. Rev. A 72(2), 022335 (2005).
[Crossref]

Phys. Rev. Lett. (1)

G. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref]

Other (4)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing175, page 8 (1984).

K. Tanizawa and F. Futami, “Digital Coherent 48-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Based on QPSK Data Modulation,” in 24th Opto-Electronics and Communications Conference (OECC)2019, paper WP4-B13.

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.

K. Tanizawa and F. Futami, “Digital Coherent 20-Gbit/s DP-PSK Y-00 Quantum Stream Cipher Transmission over 800-km SSMF,” in Optical Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America, 2019), paper Th1J.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Operating principle of PSK Y-00 cipher based on QPSK data modulation: (a) phase rotation of a symbol for encryption and (b) constellation diagram after the encryption.
Fig. 2.
Fig. 2. Coarse-to-fine phase randomization for PSK Y-00 cipher based on QPSK data modulation: the constellation diagrams show an example of operation when K = 1 and L = 2.
Fig. 3.
Fig. 3. (a) Experimental setup and (b) flow of offline DSP.
Fig. 4.
Fig. 4. Experimental results of Y-00 cipher transmission over 400- and 800-km SSMF: (a) constellation diagrams after 400-km transmission, (b) constellation diagrams after 800-km transmission, and (c) BER characteristics.
Fig. 5.
Fig. 5. Q factors and masking numbers for different signal power launched into the fiber span.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = Δ φ shot Δ θ basis = M 2 m 4 π R h ν 0 P 0
θ pp _ PM 1 = π log 2 M ( 1 1 2 K )
θ pp _ PM 2 = π log 2 M 2 K ( 1 1 2 L )

Metrics