Abstract

A noise-resilient demodulation technique is proposed and demonstrated with an interferometric-noise-suppressing (INS-) Golay coded optical pulse source for a quasi-distributed sensor array constructed by identical ultra-weak fiber Bragg gratings (UWFBGs).In combination with a medium coherence light source, coding-based time-efficient noise reduction is facilitated for closely-multiplexed UWFBG arrays, for which conventional Golay coding is inapplicable. With 32-bit INS-Golay coded pulse trains, 5.6-dB signal-to-noise ratio improvement is achieved as compared to the case where an uncoded pulse train is adopted. While the performance is almost as good as 32-time averaging, the time consumption for signal acquisition is only 1/8. The proposed INS-Golay coding method exhibits linearity up to 0.9986 in temperature sensing with a wavelength demodulation error of ±5 pm. The time efficiency of the method increases with increased code length, providing a solution that alleviates the trade-off between the demodulation accuracy and speed in the UWFBG-based sensing systems with closely-multiplexed sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings

Chen Wang, Ying Shang, Xiao-Hui Liu, Chang Wang, Hai-Hu Yu, De-Sheng Jiang, and Gang-Ding Peng
Opt. Express 23(22) 29038-29046 (2015)

Bipolar optical pulse coding for performance enhancement in BOTDA sensors

Marcelo A. Soto, Sébastien Le Floch, and Luc Thévenaz
Opt. Express 21(14) 16390-16397 (2013)

Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses

Zonglei Li, Zhisheng Yang, Lianshan Yan, Marcelo A. Soto, and Luc Thévenaz
Opt. Lett. 43(19) 4574-4577 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).
  2. T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.
  3. G. Laffont and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24, 094010 (2013).
    [Crossref]
  4. Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
    [Crossref]
  5. C. Wang, Y. Shang, X.-H. Liu, C. Wang, H.-H. Yu, D.-S. Jiang, and G.-D. Peng, “Distributed OTDR-interferometric sensing network with identical ultra-weak fiber Bragg gratings,” Opt. Express 23, 29038–29046 (2015).
    [Crossref] [PubMed]
  6. P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
    [Crossref]
  7. G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
    [Crossref]
  8. H. Guo, L. Qian, C. Zhou, Z. Zheng, Y. Yuan, R. Xu, and D. Jiang, “Crosstalk and ghost gratings in a large-scale weak fiber Bragg grating array,” J. Lightwave Technol. 35, 2032–2036 (2016).
    [Crossref]
  9. K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
    [Crossref]
  10. P. Jiang, L. Ma, Z. Hu, and Y. Hu, “Low-crosstalk and polarization-independent inline interferometric fiber sensor array based on fiber Bragg gratings,” J. Lightwave Technol. 34, 4232–4239 (2016).
    [Crossref]
  11. H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, and H. Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11, 030602 (2013).
    [Crossref]
  12. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21, 22799–22807 (2013).
    [Crossref] [PubMed]
  13. Y. Zheng, H. Yu, H. Guo, X. Li, and D. Jiang, “Analysis of the spectrum distortions of weak fiber Bragg gratings fabricated in-line on a draw tower by the phase mask technique,” J. Lightwave Technol. 33, 2670–2673 (2015).
    [Crossref]
  14. M. S. D. B. Zan and T. Horiguchi, “A dual Golay complementary pair of sequences for improving the performance of phase-shift pulse BOTDA fiber sensor,” J. Lightwave Technol. 30, 3338–3356 (2012).
    [Crossref]
  15. Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, “Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses,” Opt. Lett. 43, 4574–4577 (2018).
    [Crossref] [PubMed]
  16. P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
    [Crossref]
  17. J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
    [Crossref]
  18. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
    [Crossref]
  19. M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
    [Crossref]
  20. X. Gui, Z. Li, F. Wan, Y. Wang, C. Wang, S. Zeng, and H. Yu, “Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity,” Opt. Express 25, 28112–28122 (2017).
    [Crossref]
  21. M. Wu, X. Fan, Q. Liu, and Z. He, “Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array,” Opt. Lett. 43, 3594–3597 (2018).
    [Crossref] [PubMed]
  22. Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
    [Crossref]

2019 (1)

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

2018 (2)

2017 (5)

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

X. Gui, Z. Li, F. Wan, Y. Wang, C. Wang, S. Zeng, and H. Yu, “Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity,” Opt. Express 25, 28112–28122 (2017).
[Crossref]

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

2016 (2)

2015 (2)

2013 (4)

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

G. Laffont and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24, 094010 (2013).
[Crossref]

H. Guo, J. Tang, X. Li, Y. Zheng, H. Yu, and H. Yu, “On-line writing identical and weak fiber Bragg grating arrays,” Chin. Opt. Lett. 11, 030602 (2013).
[Crossref]

Z. Luo, H. Wen, H. Guo, and M. Yang, “A time-and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21, 22799–22807 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

2010 (1)

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

2008 (1)

P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
[Crossref]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Abushagur, A. G.

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

Bakar, A. A. A.

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

Bao, X.

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

Bassan, F. R.

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

Bernal, O.

T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.

Bi, W.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Cai, L.

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Chen, L.

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

Dai, Y.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Dong, B.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Elgaud, M. M.

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

Fan, X.

Ferdinand, P.

G. Laffont and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24, 094010 (2013).
[Crossref]

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Freitas, D. E. D.

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Gong, J.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Gowre, S. C.

P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
[Crossref]

Gui, X.

Guo, H.

Han, P.

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

He, Z.

Horiguchi, T.

Hu, Y.

Hu, Z.

Jang, H.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Jiang, D.

Jiang, D.-S.

Jiang, P.

Kim, C.-S.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Kim, G. H.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Laffont, G.

G. Laffont and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24, 094010 (2013).
[Crossref]

Lee, H. D.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Li, X.

Li, Z.

Z. Li, Z. Yang, L. Yan, M. A. Soto, and L. Thévenaz, “Hybrid Golay-coded Brillouin optical time-domain analysis based on differential pulses,” Opt. Lett. 43, 4574–4577 (2018).
[Crossref] [PubMed]

X. Gui, Z. Li, F. Wan, Y. Wang, C. Wang, S. Zeng, and H. Yu, “Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity,” Opt. Express 25, 28112–28122 (2017).
[Crossref]

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Liu, Q.

M. Wu, X. Fan, Q. Liu, and Z. He, “Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array,” Opt. Lett. 43, 3594–3597 (2018).
[Crossref] [PubMed]

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Liu, S.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Liu, X.-H.

Luo, Z.

Ma, L.

Mahapatra, S.

P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
[Crossref]

Mégret, P.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Moeyaert, V.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Park, C. H.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Park, S. M.

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Peng, G.-D.

Pham, T.

T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.

Qian, L.

Rosolem, J. B.

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

Sahu, P. K.

P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
[Crossref]

Salgado, F. C.

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

Seat, H.

T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.

Shang, Y.

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Soto, M. A.

Suleiman, M.

T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.

Tang, J.

Tang, Z.

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Thévenaz, L.

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7, 24–38 (1989).
[Crossref]

Wan, F.

Wang, A.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Wang, C.

Wang, D. Y.

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Wang, L.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Wang, Y.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

X. Gui, Z. Li, F. Wan, Y. Wang, C. Wang, S. Zeng, and H. Yu, “Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity,” Opt. Express 25, 28112–28122 (2017).
[Crossref]

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

Wen, H.

Wu, M.

Wuilpart, M.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

Xu, R.

Xu, Z.

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Yan, L.

Yang, M.

Yang, Z.

Yao, Y.

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Yu, H.

Yu, H.-H.

Yuan, Y.

Yuksel, K.

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

Zan, M. S. D.

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

Zan, M. S. D. B.

Zeng, S.

Zhao, M.

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Zheng, Y.

Zheng, Z.

Zhou, C.

Adv. Mech. Eng. (1)

Z. Li, Z. Xu, Z. Tang, M. Zhao, L. Cai, and Q. Liu, “Research of high-speed FBG demodulation system for distributed dynamic monitoring of mechanical equipment,” Adv. Mech. Eng. 2013, 679–681 (2013).

Chin. Opt. Lett. (1)

IEEE Photonics Technol. Lett. (2)

Y. Wang, J. Gong, D. Y. Wang, B. Dong, W. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photonics Technol. Lett. 23, 70–72 (2010).
[Crossref]

P. Han, Z. Li, L. Chen, and X. Bao, “A high-speed distributed ultra-weak FBG sensing system with high resolution,” IEEE Photonics Technol. Lett. 29, 1249–1252 (2017).
[Crossref]

IEEE Sensors J. (2)

K. Yuksel, V. Moeyaert, P. Mégret, and M. Wuilpart, “Complete analysis of multireflection and spectral-shadowing crosstalks in a quasi-distributed fiber sensor interrogated by OFDR,” IEEE Sensors J. 12, 988–995 (2011).
[Crossref]

J. B. Rosolem, F. R. Bassan, D. E. D. Freitas, and F. C. Salgado, “Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped Simplex code,” IEEE Sensors J. 17, 3346–3353 (2017).
[Crossref]

IET Optoelectronics (1)

P. K. Sahu, S. C. Gowre, and S. Mahapatra, “Optical time-domain reflectometer performance improvement using complementary correlated Prometheus orthogonal sequence,” IET Optoelectronics 2, 128–133 (2008).
[Crossref]

J. Lightwave Technol. (5)

Meas. Sci. Technol. (1)

G. Laffont and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high temperature measurement,” Meas. Sci. Technol. 24, 094010 (2013).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

M. M. Elgaud, M. S. D. Zan, A. G. Abushagur, and A. A. A. Bakar, “Improvement of signal to noise ratio of time domain multiplexing fiber Bragg grating sensor network with Golay complementary codes,” Opt. Fiber Technol. 36, 447–453 (2017).
[Crossref]

Opt. Lett. (2)

Sci. Reports (1)

G. H. Kim, S. M. Park, C. H. Park, H. Jang, C.-S. Kim, and H. D. Lee, “Real-time quasi-distributed fiber optic sensor based on resonance frequency mapping,” Sci. Reports 9, 3921 (2019).
[Crossref]

Sensors (1)

Y. Yao, Z. Li, Y. Wang, S. Liu, Y. Dai, J. Gong, and L. Wang, “Performance optimization design for a high-speed weak FBG interrogation system based on DFB laser,” Sensors 17, 1472 (2017).
[Crossref]

Other (1)

T. Pham, H. Seat, O. Bernal, and M. Suleiman, “A novel FBG interrogation method for potential structural health monitoring applications,” in 2011 IEEE SENSORS Proceedings, (IEEE, 2011), pp. 1341–1344.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of a closely-multiplexed UWFBG sensor array adopting a Golay coded optical source. SOA: semiconductor optical amplifier, EDFA: erbium-doped fiber amplifier, DAQ: data acquisition card, PD: photodetector, UWFBG: ultra-weak fiberBragg grating.
Fig. 2
Fig. 2 Occurrence probability of interference at different laser linewidths, adopting the C-Golay and the INS-Golay coding methods.
Fig. 3
Fig. 3 Decoded reflectivity R1550.9 along the sensing fiber from (a) 4-time and (b) 32-time averaging with uncoded pulse trains; 32-bit C-Golay coded pulse trains with (c) 10-MHz, (e) 26-MHz, and (g) 80-MHz laser linewidth; and 32-bit INS-Golay coded pulse trains with (d) 10-MHz, (f) 26-MHz linewidth, and (h) 80-MHz laser linewidth.
Fig. 4
Fig. 4 Reconstructed spectra of the four UWFBGs at the end of the 9.06-km sensor array, obtained using (a) 32-time averaging with uncoded pulse trains, (b) 32-bit C-Golay coded pulse trains, and (c) 32-bit INS-Golay coded pulse trains.
Fig. 5
Fig. 5 Temperature sensing comparing the uncoded pulse trains with 32-time averaging and 32-bit INS-Golay coding.

Tables (1)

Tables Icon

Table 1 Comparison of Time Consumption

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

{ A : [ 1 1 1 1 1 1 1 1 ] B : [ 1 1 1 1 1 1 1 1 ] .
{ A + : [ 1 1 1 0 1 1 0 1 ] A : [ 0 0 0 1 0 0 1 0 ] B + : [ 1 1 1 0 0 0 1 0 ] B : [ 0 0 0 1 1 1 0 1 ] ,
E A + , λ i [ k ] = A s + [ k ] exp  { j ϕ λ i ( k τ s ) } , k = 0 , 1 , , K 1
E A + , λ i   ' = E A + , λ i h SF , λ i ,
h SF , λ i [ m ] = r λ i [ m ] , m = 0 , 1 , , M 1
E A + , λ i   ' [ n ] = m = 0 M 1 k = 0 K 1 r λ i [ m ] A s + [ k ] exp  { j ϕ λ i ( k τ s ) } δ [ n m k ] , n = 0 , 1 , , N 1
E A + , λ i   ' [ n ] = l = k N 1 k = 0 K 1 r λ i [ l k ] A s + [ k ] exp  { j ϕ λ i ( k τ s ) } δ [ n l ] .
X A + , λ i   ' [ n ] = c oe | l = k N 1 k = 0 K 1 r λ i [ l k ] A s + [ k ] exp  { j ϕ λ i ( k τ s ) } δ [ n l ] | 2 .
X A + , λ i   ' [ n ] = c oe l = k N 1 k = 0 K 1 R λ i [ l k ] A s + [ k ] δ [ n l ] ,
X A + , λ i   ' [ n ] = A s + [ k ] R λ i [ m ] .
y λ i = X A , λ i   ' * A e + X B , λ i   ' * B e = [ X A , λ i * A e + X B , λ i * B e ] R λ i ,
y λ i = ( A s * A e + B s * B e ) R λ i .
A s * A e + B s * B e = 2 N q = K 1 K + 2 δ [ p q ] . p = 0 , 1 , , 2 K 1
y λ i = 2 N p = K 1 K + 2 m = 0 M 1 R λ i [ m ] δ [ u p m ] , u = 0 , 1 , , 2 K + M 2
X A , λ i   ' [ n ] = c oe l = k N 1 k = 0 K 1 R λ i [ l k ] A s + [ k ] δ [ n l ] + 2 c oe l = k N 1 k   ' = k cll k clu k = 0 K 1 { A s + [ k ] A s + [ k   ' ] r [ l k ] r [ l k   ' ] cos   { ϕ λ i ( k τ s ) ϕ λ i ( k   ' τ s ) } δ [ n l ] } + 2 c oe l = k N 1 k   ' = k cul k cuu k = 0 K 1 { A s + [ k ] A s + [ k   ' ] r [ l k ] r [ l k   ' ] cos   { ϕ λ i ( k τ s ) ϕ λ i ( k   ' τ s ) } δ [ n l ] } ,
N IN , A + = n = 0 N 1 ( N NZ , A + [ n ] 1 ) .
p o = N IN , A + + N IN , A + N IN , B + + N IN , B 4 N IN , ref ,

Metrics