Abstract

Labelfree nanoscopy encompasses optical imaging with resolution in the 100 nm range using visible wavelengths. Here, we present a labelfree nanoscopy method that combines coherent imaging techniques with waveguide microscopy to realize a super-condenser featuring maximally inclined coherent darkfield illumination with artificially stretched wave vectors due to large refractive indices of the employed Si3N4 waveguide material. We produce the required coherent plane wave illumination for Fourier ptychography over imaging areas 400 μm2 in size via adiabatically tapered single-mode waveguides and tackle the overlap constraints of the Fourier ptychography phase retrieval algorithm two-fold: firstly, the directionality of the illumination wave vector is changed sequentially via a multiplexed input structure of the waveguide chip layout and secondly, the wave vector modulus is shortend via step-wise increases of the illumination light wavelength over the visible spectrum. We test the method in simulations and in experiments and provide details on the underlying image formation theory as well as the reconstruction algorithm. While the generated Fourier ptychography reconstructions are found to be prone to image artefacts, an alternative coherent imaging method, rotating coherent scattering microscopy (ROCS), is found to be more robust against artefacts but with less achievable resolution.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Subwavelength resolution scanning diffracted-light microscopy using plasmonic ultra-thin condensers

Sueli Skinner-Ramos, Hira Farooq, Hawra Alghasham, Ayrton A. Bernussi, and Luis Grave de Peralta
Opt. Express 26(15) 19718-19729 (2018)

Reflection confocal nanoscopy using a super-oscillatory lens

Arvind Nagarajan, L. Pjotr Stoevelaar, Fabrizio Silvestri, Marijn Siemons, Venu Gopal Achanta, Stefan M. B. Bäumer, and Giampiero Gerini
Opt. Express 27(14) 20012-20027 (2019)

Subwavelength resolution Fourier ptychography with hemispherical digital condensers

An Pan, Yan Zhang, Kai Wen, Meiling Zhou, Junwei Min, Ming Lei, and Baoli Yao
Opt. Express 26(18) 23119-23131 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
    [Crossref] [PubMed]
  2. S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
    [Crossref] [PubMed]
  3. J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
    [Crossref] [PubMed]
  4. C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
    [Crossref] [PubMed]
  5. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
    [Crossref]
  6. Y. Kozawa, D. Matsunaga, and S. Sato, “Superresolution imaging via superoscillation focusing of a radially polarized beam,” Optica 5, 86–92 (2018).
    [Crossref]
  7. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  8. G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
    [Crossref]
  9. E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
    [Crossref] [PubMed]
  10. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
    [Crossref]
  11. R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
    [Crossref]
  12. E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch Mikrosk Anat 9, 413–418 (1873).
    [Crossref]
  13. J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
    [Crossref] [PubMed]
  14. D. Ruh, J. Mutschler, M. Michelbach, and A. Rohrbach, “Superior contrast and resolution by image formation in rotating coherent scattering (rocs) microscopy,” Optica 5, 1371–1381 (2018).
    [Crossref]
  15. F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
    [Crossref]
  16. A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.
  17. G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
    [Crossref]
  18. F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-a cladded mach-zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
    [Crossref] [PubMed]
  19. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
    [Crossref]
  20. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using pecvd: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
    [Crossref] [PubMed]
  21. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
    [Crossref]
  22. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
    [Crossref]
  23. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20, 27661–27669 (2012).
    [Crossref] [PubMed]
  24. Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
    [Crossref]
  25. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
    [Crossref]
  26. J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
    [Crossref] [PubMed]
  27. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
    [Crossref]
  28. I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).
  29. S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
    [Crossref]
  30. C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
    [Crossref]
  31. F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).
  32. J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
    [Crossref] [PubMed]
  33. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
    [Crossref] [PubMed]
  34. F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
    [Crossref] [PubMed]
  35. Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
    [Crossref]
  36. L. Gao, F. Lemarchand, and M. Lequime, “Exploitation of multiple incidences spectrometric measurements for thin film reverse engineering,” Opt. Express 20, 15734–15751 (2012).
    [Crossref] [PubMed]
  37. T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).
  38. J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
    [Crossref]
  39. A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
    [Crossref]
  40. W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
    [Crossref]
  41. R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
    [Crossref]
  42. Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

2019 (2)

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

2018 (3)

2017 (6)

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref] [PubMed]

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

2016 (2)

F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
[Crossref] [PubMed]

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

2015 (6)

F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-a cladded mach-zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
[Crossref] [PubMed]

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

2013 (4)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

2012 (3)

2011 (2)

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

2010 (2)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
[Crossref]

2008 (2)

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using pecvd: a study of the effect of plasma frequency on optical properties,” Opt. Express 16, 13509–13516 (2008).
[Crossref] [PubMed]

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
[Crossref] [PubMed]

2006 (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

2003 (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

1992 (1)

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

1873 (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch Mikrosk Anat 9, 413–418 (1873).
[Crossref]

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Abbe, E.

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch Mikrosk Anat 9, 413–418 (1873).
[Crossref]

Ach, T.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Ahluwalia, B. S.

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref] [PubMed]

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Aimez, V.

Amberger, R.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Aubert, T.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Baddeley, D.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Baets, R.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
[Crossref]

Ball, G.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Baumberg, J. J.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Best, G.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Bian, Z.

Biehlmaier, O.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Bienstman, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Bisschop, S.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Bogaerts, W.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
[Crossref]

Bois, B. Du

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Brainis, E.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Brasch, V.

Calado, V.

J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
[Crossref]

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Campenhout, J. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Charette, P.

Chen, N.

A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
[Crossref]

Chen, Q.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Chen, Y.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Cremer, C.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Dave, U. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Demmerle, J.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Dhakal, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

Diekmann, R.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Dietrich, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Dithmar, S.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Dobbie, I. M.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Dong, S.

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

Dorpe, P. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Drummen, G. P.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Dullo, F. T.

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-a cladded mach-zehnder interferometer,” Opt. Express 23, 31564–31573 (2015).
[Crossref] [PubMed]

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Dumon, P.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
[Crossref]

Eggeling, C.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Engqvist, M.

Fairen-Jimenez, D.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Fantham, M.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Farha, O. K.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Ferrand, A.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Franta, D.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

Gao, L.

Geiregat, P.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Gorin, A.

Grondin, E.

Groote, A. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Guo, K.

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

Hainberger, R.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Hansen, J. H.

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Hartinger, K.

Hecker, L.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Heidbreder, M.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Heilemann, M.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Heintzmann, R.

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Helle, Ø. I.

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref] [PubMed]

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Hellesø, O. G.

Hens, Z.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Herr, T.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Hockings, C.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Holzwarth, R.

Horstmeyer, R.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
[Crossref]

Huser, T.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Huser, T. R.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Innocent, C.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Jágerská, J.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Jaouad, A.

Jünger, F.

F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
[Crossref] [PubMed]

Kaminski, C. F.

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Kaminski-Schierle, G. S.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Kippenberg, T. J.

Klein, T.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Kley, E.-B.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Klumperman, J.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
[Crossref] [PubMed]

Koppitsch, G.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kozawa, Y.

Kraft, J.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Kroker, S.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Kung, C.-W.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Kuyken, B.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Lahrberg, M.

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Le Thomas, N.

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Lemarchand, F.

Leo, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Lequime, M.

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Li, A.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Li, J.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Liao, J.

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

Lin, J. Q.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Lindecrantz, S.

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

Liu, Q.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Liu, X.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Liu, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Löschberger, A.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Mahrt, R. F.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Malik, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Markaki, Y.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Martens, D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Matsuda, A.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Matsunaga, D.

McCourt, P.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Mela, I.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Melnik, E.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Michelbach, M.

Miron, E.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Moghadam, P. Z.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

Muellner, P.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Müller, M.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Muneeb, M.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Mutschler, J.

Nanda, P.

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Noh, H.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

North, A. J.

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Ohlídal, I.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Øie, C. I.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Olshausen, P. v.

F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
[Crossref] [PubMed]

Oorschot, V.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
[Crossref] [PubMed]

Opstad, I. S.

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Osterrieth, J. W.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Ou, X.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

Pang, C.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Park, J. E.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Pathak, S.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Peyskens, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

Pfeiffer, K.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Puffky, O.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Rainò, G.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Riemensberger, J.

Roelkens, G.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Rohrbach, A.

D. Ruh, J. Mutschler, M. Michelbach, and A. Rohrbach, “Superior contrast and resolution by image formation in rotating coherent scattering (rocs) microscopy,” Optica 5, 1371–1381 (2018).
[Crossref]

F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
[Crossref] [PubMed]

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Ruh, D.

Ruocco, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Ryckeboer, E.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Sato, S.

Sauer, M.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Schermelleh, L.

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Schrank, F.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Schüttpelz, M.

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Shao, Z.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Shen, W.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Siefke, T.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Situ, G.

A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
[Crossref]

Solbø, S. A.

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stöferle, T.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Ströhl, F.

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Subramanian, A. Z.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

Sun, J.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Szeghalmi, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Tang, M.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Thomas, N. L.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Thourhout, D. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Tinevez, J. Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Tinguely, J.-C.

J.-C. Tinguely, Ø. I. Helle, and B. S. Ahluwalia, “Silicon nitride waveguide platform for fluorescence microscopy of living cells,” Opt. Express 25, 27678–27690 (2017).
[Crossref] [PubMed]

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Trautman, J. K.

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Tünnermann, A.

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Van de Linde, S.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Van De Sanden, M.

J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
[Crossref]

Van Dorpe, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

Van Duyne, R. P.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Van Rijnsoever, C.

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
[Crossref] [PubMed]

van Tartwijk, F. W.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Van Thourhout, D.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Vanderpoorten, O.

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Vulpe, D.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Wang, H.

A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
[Crossref]

Wang, J.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Wang, Y.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Weber, J.

J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
[Crossref]

Wen, Y.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Willems, P.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

Wolter, S.

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

Wright, D.

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

Wu, Z.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Wuytens, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

Xie, W.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Xu, M.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Xu, P.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Yang, C.

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
[Crossref]

Yang, Q.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Yu, S.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Yurtsever, G.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
[Crossref]

Zhang, H.

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Zhang, L.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Zhang, T.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Zhang, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

Zhang, Y.

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Zhao, H.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Zheng, G.

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
[Crossref]

Z. Bian, S. Dong, and G. Zheng, “Adaptive system correction for robust fourier ptychographic imaging,” Opt. Express 21, 32400–32410 (2013).
[Crossref]

Zhou, A.

A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
[Crossref]

Zhu, Y.

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Zuo, C.

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E.-B. Kley, and A. Tünnermann, “Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range,” Adv. Funct. Mater. 4, 1780–1786 (2016).

Adv. Mater. (1)

W. Xie, T. Stöferle, G. Rainò, T. Aubert, S. Bisschop, Y. Zhu, R. F. Mahrt, P. Geiregat, E. Brainis, Z. Hens, and D. Van Thourhout, “On-chip integrated quantum-dot–silicon-nitride microdisk lasers,” Adv. Mater. 29, 1604866 (2017).
[Crossref]

Appl. Phys. Lett. (1)

J. Weber, V. Calado, and M. Van De Sanden, “Optical constants of graphene measured by spectroscopic ellipsometry,” Appl. Phys. Lett. 97, 091904 (2010).
[Crossref]

Arch Mikrosk Anat (1)

E. Abbe, “Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung,” Arch Mikrosk Anat 9, 413–418 (1873).
[Crossref]

Comput Med Imaging Graph (1)

R. Horstmeyer, X. Ou, G. Zheng, P. Willems, and C. Yang, “Digital pathology with fourier ptychography,” Comput Med Imaging Graph 42, 38–43 (2015).
[Crossref]

IEEE Photon. J. (2)

F. T. Dullo, J.-C. Tinguely, S. A. Solbø, and O. G. Hellesø, “Single-mode limit and bending losses for shallow rib Si3N4 waveguides,” IEEE Photon. J. 7, 1–11 (2015).
[Crossref]

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-loss singlemode pecvd silicon nitride photonic wire waveguides for 532–900 nm wavelength window fabricated within a cmos pilot line,” IEEE Photon. J. 5, 2202809 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

J. W. Osterrieth, D. Wright, H. Noh, C.-W. Kung, D. Vulpe, A. Li, J. E. Park, R. P. Van Duyne, P. Z. Moghadam, J. J. Baumberg, O. K. Farha, and D. Fairen-Jimenez, “Core-shell gold nanorod@zirconium-based metal-organic framework composites as in situ size-selective raman probes,” J. Am. Chem. Soc. 141, 3893–3900 (2019).
[Crossref] [PubMed]

J. Opt. (2)

A. Zhou, N. Chen, H. Wang, and G. Situ, “Analysis of fourier ptychographic microscopy with half of the captured images,” J. Opt. 20, 095701 (2018).
[Crossref]

Z. Wu, Y. Chen, T. Zhang, Z. Shao, Y. Wen, P. Xu, Y. Zhang, and S. Yu, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
[Crossref]

Micron (1)

G. Best, R. Amberger, D. Baddeley, T. Ach, S. Dithmar, R. Heintzmann, and C. Cremer, “Structured illumination microscopy of autofluorescent aggregations in human tissue,” Micron 42, 330–335 (2011).
[Crossref]

Nanotechnology (1)

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
[Crossref]

Nat. Cell Biol. (1)

L. Schermelleh, A. Ferrand, T. Huser, C. Eggeling, M. Sauer, O. Biehlmaier, and G. P. Drummen, “Super-resolution microscopy demystified,” Nat. Cell Biol. 21, 72 (2019).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1, 143 (2010).
[Crossref]

Nat. Methods (2)

C. Van Rijnsoever, V. Oorschot, and J. Klumperman, “Correlative light-electron microscopy (clem) combining live-cell imaging and immunolabeling of ultrathin cryosections,” Nat. Methods 5, 973 (2008).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9, 676 (2012).
[Crossref] [PubMed]

Nat. Photonics (3)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution fourier ptychographic microscopy,” Nat. Photonics 7, 739 (2013).
[Crossref]

R. Diekmann, Ø. I. Helle, C. I. Øie, P. McCourt, T. R. Huser, M. Schüttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat. Photonics 11, 322 (2017).
[Crossref]

Nat. Protoc. (2)

S. Van de Linde, A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann, and M. Sauer, “Direct stochastic optical reconstruction microscopy with standard fluorescent probes,” Nat. Protoc. 6, 991 (2011).
[Crossref] [PubMed]

J. Demmerle, C. Innocent, A. J. North, G. Ball, M. Müller, E. Miron, A. Matsuda, I. M. Dobbie, Y. Markaki, and L. Schermelleh, “Strategic and practical guidelines for successful structured illumination microscopy,” Nat. Protoc. 12, 988 (2017).
[Crossref] [PubMed]

Opt. Express (6)

Optica (2)

Photonics Res. (2)

S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent fourier ptychographic photography using structured light,” Photonics Res. 3, 19–23 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photonics Res. 3, B47–B59 (2015).
[Crossref]

Procedia Eng. (1)

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “Cmos-compatible si3n4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
[Crossref]

Sci. Rep. (2)

J. Sun, C. Zuo, L. Zhang, and Q. Chen, “Resolution-enhanced fourier ptychographic microscopy based on high-numerical-aperture illuminations,” Sci. Rep. 7, 1187 (2017).
[Crossref] [PubMed]

F. Jünger, P. v. Olshausen, and A. Rohrbach, “Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (rocs) microscopy,” Sci. Rep. 6, 30393 (2016).
[Crossref] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

E. Betzig and J. K. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science 257, 189–195 (1992).
[Crossref] [PubMed]

Other (6)

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip raman spectroscopy,” in “Optical Sensing and Detection III,” (SPIE, 2014), p. 9141.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for fourier domain optical coherence tomography,” in “Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV,” (SPIE, 2010), p. 75541.
[Crossref]

C. Pang, J. Li, M. Tang, J. Wang, I. Mela, F. Ströhl, L. Hecker, W. Shen, Q. Liu, X. Liu, Y. Wang, H. Zhang, M. Xu, X. Zhang, X. Liu, Q. Yang, and C. F. Kaminski, “On-chip super-resolution imaging with fluorescent polymer films,” Adv. Funct. Mater. p. 1900126 (2019).
[Crossref]

F. Ströhl, I. S. Opstad, J.-C. Tinguely, F. T. Dullo, C. F. Kaminski, and B. S. Ahluwalia, “Label-free nanoscopy enabled by coherent imaging with photonic waveguides,” Proc. SPIE (accepted) (2019).

I. S. Opstad, F. Ströhl, M. Fantham, C. Hockings, O. Vanderpoorten, F. W. van Tartwijk, J. Q. Lin, J.-C. Tinguely, F. T. Dullo, G. S. Kaminski-Schierle, B. S. Ahluwalia, and C. F. Kaminski, “A waveguide imaging platform for live cell tirf imaging of neurons over large fields of view,” in review (2019).

Ø. I. Helle, F. T. Dullo, M. Lahrberg, J.-C. Tinguely, and B. S. Ahluwalia, “Structured illumination microscopy using a photonic chip,” arXiv preprint arXiv:1903.05512 (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Amplitude/modulation transfer functions using (a) coherent, (b) incoherent, and (c) oblique illumination. Amplitude transfer function sampling in (d) conventional FP and (e) waveguide-based Fourier ptychographic microscopy. E: electric field, I: intensity, O: objective, S: sample, and C: condenser. The arrow highlights the cut-off frequency for different imaging modalities.
Fig. 2
Fig. 2 (a) Chip design: 8 inputs deliver visible light at various illumination angles to the imaging region, while simultaneously ensuring single-mode characteristics through bending (bend radii ≥ 2 mm) and adiabatic tapering. (b) Waveguide production steps: the surface of a silicon waver is thermally oxidized and subsequently covered with a layer of silicon nitride via low-pressure chemical vapor deposition (LPCVD). The waveguides structure is then created via photolithography and reactive ion etching (RIE) to produce the required 4 nm-sized rib. A protective wall between the waveguides is created via plasma-enhanced CVD of silicon oxide followed by LPCVD of polycrystalline silicon. RIE followed by chemical etching using hydrofluoric acid (HF) uncovers the waveguides again [15]. (c) The optical microscope as outlined in the main text: LED illuminator (LED), liquid light guide (L), fibre input for lasers (F), reflective collimator (R), vacuum stage (V), piezo stage (P), micrometer stage (M), sample stage (S), objectives (O1/2), tube lens (T), (dichroic) mirrors (D1/2/3), cameras (C1/2/3).
Fig. 3
Fig. 3 Phase-retrieval algorithm on simulated data. Details are provided in the text.
Fig. 4
Fig. 4 Imaging of metal-organic frameworks (MOFs) with FP. (a) Overview of the imaged region. (b) Raw evanescent scattering images under waveguide illumination with 488nm, 561nm, and 647nm laser light. (c) Brightfield image using sum of multiple LED wavelengths. (d) Intensity image created by Fourier ptychography. The red arrow in the inlay might be mistaken for individual particles but is most likely an image reconstruction artefact as its full width at half maximum (FWHM) is smaller then the theoretically achievable FWHM (∼ 50 nm versus ∼ 165 nm). (e) Atomic force microscopy image (line levelling artefacts prohibit a clear view of individual particles). Inlays show a zoomed region of a cluster of MOFs. The overview image (a) measures 100×100 μm2 and the scalebars in (c–e) are 1 μm and 100 nm in the inlays respectively.
Fig. 5
Fig. 5 Imaging of metal-organic frameworks (MOFs) with ROCS. (a) Overview of the imaged region. (b) Raw evanescent scattering images under waveguide illumination with a 488 nm laser. (c) Brightfield image using sum of multiple LED wavelengths. The red circle highlights a cluster that is only visible under darkfield illumination. (d) Intensity image created by ROCS with (e) zoom onto MOF clusters. Although it is not possible to discern individual particles, the elongated shape of the clusters is visualised by ROCS in good agreement with (f) the atomic force microscopy image of the same region. The overview image (a) measures 100 × 100 μm2 and the scalebars in (b–f) are 1 μm.
Fig. 6
Fig. 6 Theoretically achievable resolution given in nm via different waveguide materials and substrate/immersion objective combinations (assuming shortest illumination wavelength of 445 nm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ x = λ NA c + NA o
i k 0 , k c ( x ) = | [ s ( x ) × exp ( i k 0 × x ) ] h c ( x ) | 2 .
a k 0 , k c ( x ) = { 𝔉 { 𝔉 { i k 0 , k c ( x ) b } × H c ( k 2 ) } } .
t k 0 , k c j ( x ) = 𝔉 { F j ( k k 0 ) × H c } .
t k 0 , k c j + 1 ( x ) = a k 0 , k c ( x ) × exp ( i Φ ( t j ( x ) ) ) .
F j + 1 ( k ) = F j ( k ) × ( 1 H c ( k k 0 ) ) ) + H c ( k k 0 ) ) × T k 0 , k c j + 1 ( k k 0 ) .
f ( x ) = 𝔉 { apo ( pad ( F ( k ) ) ) } .
Δ x TiO = 405 nm ( 1.49 + 2.66 ) = 97.6 nm .

Metrics