Abstract

Broadband photon detectors are a key enabling technology for various applications such as spectrometers, light detection and ranging. In this work, we report on an ultra-broadband single-photon detector based on a microfiber (MF)-coupled superconducting nanowires structure operating in the spectral range from visible to near-infrared light. The MF-coupled superconducting nanowire single-photon detector (SNSPD) is formed by placing an MF on top of superconducting niobium nitride (NbN) nanowires, allowing ultra-broadband photon detection due to their nearly lossless transmission/absorption and nearly unity internal efficiency for ultra-broad waveband. The simulation results indicate that with optimal device structure, the optical absorption with efficiency > 90% can be realized over a wavelength range of 350 nm to 2150 nm. The fabricated MF-coupled SNSPD shows unparalleled broadband system detection efficiencies (SDEs) of more than 50% from 630 nm to 1500 nm. The SDEs reach 66% at 785 nm and 45% at 1550 nm. These results pave the way for ultra-broadband weak light detection with quantum-limit sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths

Lixing You, Junjie Wu, Yingxin Xu, Xintong Hou, Wei Fang, Hao Li, Weijun Zhang, Lu Zhang, Xiaoyu Liu, Limin Tong, Zhen Wang, and Xiaoming Xie
Opt. Express 25(25) 31221-31229 (2017)

Supercontinuum single-photon detector using multilayer superconducting nanowires

Hao Li, Yong Wang, Lixing You, Heqing Wang, Hui Zhou, Peng Hu, Weijun Zhang, Xiaoyu Liu, Xiaoyan Yang, Lu Zhang, Zhen Wang, and Xiaoming Xie
Photon. Res. 7(12) 1425-1431 (2019)

Multispectral superconducting nanowire single photon detector

Hao Li, Heqing Wang, Lixing You, Peng Hu, Weidong Shen, Weijun Zhang, Xiaoyan Yang, Lu Zhang, Hui Zhou, Zhen Wang, and Xiaoming Xie
Opt. Express 27(4) 4727-4733 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).
  2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
    [Crossref]
  3. Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
    [Crossref]
  4. M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
    [Crossref]
  5. H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
    [Crossref] [PubMed]
  6. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  7. A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
    [Crossref] [PubMed]
  8. A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
    [Crossref] [PubMed]
  9. N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
    [Crossref] [PubMed]
  10. T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
    [Crossref]
  11. J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
    [Crossref]
  12. R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
    [Crossref]
  13. A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
    [Crossref]
  14. A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
    [Crossref]
  15. E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
    [Crossref] [PubMed]
  16. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
    [Crossref] [PubMed]
  17. W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
    [Crossref]
  18. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
    [Crossref]
  19. Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).
    [Crossref]
  20. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
    [Crossref]
  21. L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
    [Crossref] [PubMed]
  22. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  23. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 63001–63016 (2012).
    [Crossref]
  24. J. A. Woollam Co., Refractive index database, https://refractiveindex.info .
  25. A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
    [Crossref]
  26. Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
    [Crossref]
  27. A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “A single photon detection system for the spectrum range up to 2300 nm,” arXiv:1807.04273 (2018).
  28. Y. Chen, Z. Ma, Q. Yang, and L. M. Tong, “Compact optical short-pass filters based on microfibers,” Opt. Lett. 33(21), 2565–2567 (2008).
    [Crossref] [PubMed]
  29. N. Murata and K. Nakamura, “UV-Curable Adhesives For Optical Communications,” J. Adhes. 35(4), 251–267 (1991).
    [Crossref]
  30. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19(9), 8596–8601 (2011).
    [Crossref] [PubMed]
  31. Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
    [Crossref]
  32. A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).
  33. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
    [Crossref]
  34. T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
    [Crossref] [PubMed]
  35. J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
    [Crossref] [PubMed]

2017 (7)

T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
[Crossref] [PubMed]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

2016 (1)

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

2015 (1)

2014 (4)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
[Crossref]

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

2013 (6)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

2012 (3)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 63001–63016 (2012).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (2)

2008 (1)

2007 (1)

2004 (1)

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

2001 (1)

R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
[Crossref]

1991 (1)

N. Murata and K. Nakamura, “UV-Curable Adhesives For Optical Communications,” J. Adhes. 35(4), 251–267 (1991).
[Crossref]

1979 (1)

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Acerbi, F.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

Allmaras, J. P.

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Beyer, A. D.

Boroson, D. M.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Briggs, R. M.

Bromberg, Y.

Buller, G. S.

Calandri, N.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

Chen, K.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Chen, S.

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
[Crossref] [PubMed]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref] [PubMed]

Chen, T.-Y.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Chen, X.-F.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Chen, Y.

Chen, Y.-A.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Chormaic, S. N.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Chulkova, G.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Collins, R. J.

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Dayan, B.

DeVoe, C. E.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Divochiy, A.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Dodge, M. J.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Dorenbos, S. D.

Dorenbos, S. N.

Fan, J.-Y.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Fang, W.

Feldman, A.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Fernández, V.

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Friesem, A. A.

Fujiwara, M.

Gemmell, N. R.

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Goede, A. P. H.

R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
[Crossref]

Goltsman, G.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Grein, M. E.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Hadfield, R. H.

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

He, Y.

Hoffman, J. E.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Hoogeveen, R. W. M.

R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
[Crossref]

Horowitz, D.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Hou, X.

Hu, X.-F.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Hu, Y.-H.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Huang, J.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Huang, Y.-M.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Jia, J.-J.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Jiang, H.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Jiang, X.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Jiang, Y.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Kerman, A. J.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Korneev, A.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Korneeva, Y.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Korzh, B.

Krichel, N. J.

Larionov, P.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Li, H.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
[Crossref] [PubMed]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

Liang, H.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Liao, S.-K.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Lita, A. E.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Liu, B.

Liu, W.-Y.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Liu, X.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

Liu, X. Y.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Lou, J.

Lv, C.

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
[Crossref] [PubMed]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

Lv, C. L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Ma, Z.

Manova, N.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Mao, Y.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Marsili, F.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Martinez-Ramirez, D.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

Mazur, E.

McCarthy, A.

Miki, S.

T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
[Crossref]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

Mirin, R. P.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Morak, S.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

Murata, N.

N. Murata and K. Nakamura, “UV-Curable Adhesives For Optical Communications,” J. Adhes. 35(4), 251–267 (1991).
[Crossref]

Murphy, D. V.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Nakamura, K.

N. Murata and K. Nakamura, “UV-Curable Adhesives For Optical Communications,” J. Adhes. 35(4), 251–267 (1991).
[Crossref]

Nam, S. W.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 63001–63016 (2012).
[Crossref]

Nichol, C. J.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

Orozco, L. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Pan, G.-S.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Pan, J.-W.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Patterson, M. S.

Pe’er, A.

Peng, C.-Z.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Qi, B.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Qiu, Q.

Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
[Crossref]

Ravets, S.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Ren, J.-G.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Ren, X.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Robinson, B. S.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Rosenberg, D.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Sanzaro, M.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

Semenov, A.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Shatrovoy, O.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Shaw, M. D.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Shen, Q.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Shi, S.-J.

Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
[Crossref]

Silberberg, Y.

Smirnov, K.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Sun, Q.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Takeuchi, S.

Tang, Y.-L.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Tanner, M. G.

Terai, H.

T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
[Crossref]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Tong, L.

Tong, L. M.

Tosi, A.

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

Toubaru, K.

Truong, V. G.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Vachtomin, Y.

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

van der A, R. J.

R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
[Crossref]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Verma, V. B.

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Wallace, A. M.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[Crossref] [PubMed]

Wang, J.-Y.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Wang, Y.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

Wang, Z.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, “Improving the timing jitter of a superconducting nanowire single-photon detection system,” Appl. Opt. 56(8), 2195–2200 (2017).
[Crossref] [PubMed]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref] [PubMed]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

Wang, Z.-Y.

Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
[Crossref]

Waxler, R. M.

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Wilson, B. C.

Wollman, E. E.

Wongcampos, J. D.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Woodhouse, I. H.

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

Wu, J.

Wu, J. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Wu, J.-C.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Xie, X.

Xie, X. M.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Xu, Y.

Yamashita, T.

T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
[Crossref]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

Yang, B.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Yang, Q.

Yang, S.-J.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Yin, J.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Yoon, J.

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

You, L.

You, L. X.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

You, L.-X.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Zhang, L.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Zhang, Q.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Zhang, W.

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref] [PubMed]

Zhang, W. J.

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Zhang, Y.

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

Zhong, B.

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

Zhou, H.

Zwiller, V.

AIP Adv. (1)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wongcampos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Adv. 4(6), 541–546 (2014).
[Crossref]

Am. J. Nurs. (1)

A. Feldman, D. Horowitz, R. M. Waxler, and M. J. Dodge, “Optical Materials Characterization Final Technical Report,” Am. J. Nurs. 105, 78–85 (1979).

Appl. Opt. (2)

Chin. Phys. B (1)

Z.-Y. Wang, Q. Qiu, and S.-J. Shi, “Temperature dependence of the refractive index of optical fibers,” Chin. Phys. B 23(3), 034201 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Tosi, N. Calandri, M. Sanzaro, and F. Acerbi, “Low-Noise, Low-Jitter, High Detection Efficiency InGaAs/InP Single-Photon Avalanche Diode,” IEEE J. Sel. Top. Quantum Electron. 20(6), 192–197 (2014).
[Crossref]

IEEE Trans. Appl. Supercond. (2)

A. Korneev, Y. Korneeva, N. Manova, P. Larionov, A. Divochiy, A. Semenov, G. Chulkova, Y. Vachtomin, K. Smirnov, and G. Goltsman, “Recent Nanowire Superconducting Single-Photon Detector Optimization for Practical Applications,” IEEE Trans. Appl. Supercond. 23(3), 2201204 (2013).
[Crossref]

Y. Wang, H. Li, L. You, C. Lv, J. Huang, W. Zhang, L. Zhang, X. Liu, Z. Wang, and X. Xie, “Broadband Near-Infrared Superconducting Nanowire Single-Photon Detector With Efficiency Over 50%,” IEEE Trans. Appl. Supercond. 27, 1–4 (2017).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

A. M. Wallace, A. McCarthy, C. J. Nichol, X. Ren, S. Morak, D. Martinez-Ramirez, I. H. Woodhouse, and G. S. Buller, “Design and Evaluation of Multispectral LiDAR for the Recovery of Arboreal Parameters,” IEEE Trans. Geosci. Remote Sens. 52(8), 4942–4954 (2014).
[Crossref]

IEICE Trans. Electron. (1)

T. Yamashita, S. Miki, and H. Terai, “Recent Progress and Application of Superconducting Nanowire Single-Photon Detectors,” IEICE Trans. Electron. E100, 274–282 (2017).
[Crossref]

Infrared Phys. Technol. (1)

R. W. M. Hoogeveen, R. J. van der A, and A. P. H. Goede, “R. J. van der A, and A. P. H. Goede, “Extended wavelength InGaAs infrared (1.0–2.4 μm) detector arrays on SCIAMACHY for space-based spectrometry of the Earth atmosphere,” Infrared Phys. Technol. 42(1), 1–16 (2001).
[Crossref]

J. Adhes. (1)

N. Murata and K. Nakamura, “UV-Curable Adhesives For Optical Communications,” J. Adhes. 35(4), 251–267 (1991).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12(9), 4799–4804 (2012).
[Crossref] [PubMed]

Nat. Photonics (4)

J.-Y. Wang, B. Yang, S.-K. Liao, L. Zhang, Q. Shen, X.-F. Hu, J.-C. Wu, S.-J. Yang, H. Jiang, Y.-L. Tang, B. Zhong, H. Liang, W.-Y. Liu, Y.-H. Hu, Y.-M. Huang, B. Qi, J.-G. Ren, G.-S. Pan, J. Yin, J.-J. Jia, Y.-A. Chen, K. Chen, C.-Z. Peng, and J.-W. Pan, “Direct and full-scale experimental verifications towards ground–satellite quantum key distribution,” Nat. Photonics 7(5), 387–393 (2013).
[Crossref]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics 3, 696–705 (2009).

Q. Sun, Y. Mao, S. Chen, W. Zhang, Y. Jiang, Y. Zhang, W. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F. Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation with independent sources and prior entanglement distribution over a network,” Nat. Photonics 10(10), 671–675 (2016).
[Crossref]

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency,” Nat. Photonics 7(3), 210–214 (2013).
[Crossref]

Opt. Commun. (2)

Y. Xu, J. Wu, W. Fang, L. You, and L. Tong, “Microfiber coupled superconducting nanowire single-photon detectors,” Opt. Commun. 405, 48–52 (2017).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Opt. Express (9)

T. Yamashita, S. Miki, H. Terai, and Z. Wang, “Low-filling-factor superconducting single photon detector with high system detection efficiency,” Opt. Express 21(22), 27177–27184 (2013).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19(9), 8596–8601 (2011).
[Crossref] [PubMed]

L. You, J. Wu, Y. Xu, X. Hou, W. Fang, H. Li, W. Zhang, L. Zhang, X. Liu, L. Tong, Z. Wang, and X. Xie, “Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths,” Opt. Express 25(25), 31221–31229 (2017).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

A. McCarthy, N. J. Krichel, N. R. Gemmell, X. Ren, M. G. Tanner, S. N. Dorenbos, V. Zwiller, R. H. Hadfield, and G. S. Buller, “Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection,” Opt. Express 21(7), 8904–8915 (2013).
[Crossref] [PubMed]

A. Pe’er, Y. Bromberg, B. Dayan, Y. Silberberg, and A. A. Friesem, “Broadband sum-frequency generation as an efficient two-photon detector for optical tomography,” Opt. Express 15(14), 8760–8769 (2007).
[Crossref] [PubMed]

N. R. Gemmell, A. McCarthy, B. Liu, M. G. Tanner, S. D. Dorenbos, V. Zwiller, M. S. Patterson, G. S. Buller, B. C. Wilson, and R. H. Hadfield, “Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector,” Opt. Express 21(4), 5005–5013 (2013).
[Crossref] [PubMed]

H. Zhou, Y. He, L. You, S. Chen, W. Zhang, J. Wu, Z. Wang, and X. Xie, “Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector,” Opt. Express 23(11), 14603–14611 (2015).
[Crossref] [PubMed]

E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili, A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw, “UV superconducting nanowire single-photon detectors with high efficiency, low noise, and 4 K operating temperature,” Opt. Express 25(22), 26792–26801 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

W. J. Zhang, L. X. You, H. Li, J. Huang, C. L. Lv, L. Zhang, X. Y. Liu, J. J. Wu, Z. Wang, and X. M. Xie, “NbN superconducting nanowire single photon detector with efficiency over 90% at 1550 nm wavelength operational at compact cryocooler temperature,” Sci. China Phys. Mech. Astron. 60(12), 120314 (2017).
[Crossref]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25(6), 63001–63016 (2012).
[Crossref]

Other (3)

J. A. Woollam Co., Refractive index database, https://refractiveindex.info .

A. Divochiy, M. Misiaszek, Y. Vakhtomin, P. Morozov, K. Smirnov, P. Zolotov, and P. Kolenderski, “A single photon detection system for the spectrum range up to 2300 nm,” arXiv:1807.04273 (2018).

M. E. Grein, A. J. Kerman, E. A. Dauler, O. Shatrovoy, R. J. Molnar, D. Rosenberg, J. Yoon, C. E. DeVoe, D. V. Murphy, B. S. Robinson, and D. M. Boroson, “Design of a ground-based optical receiver for the lunar laser communications demonstration,” in 2011 International Conference on Space Optical Systems and Applications (ICSOS) (2011), pp. 78–82.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Blue solid square dots and hollow dots represent the calculated effective mode indices of the TE and TM modes in the symmetrical structure respectively, when the diameter of the MF is 1.3 μm. The solid red line and dotted line represent the RIs of MgF2 (o) and MgF2 (e) respectively. Inset: profiles of the TE and TM modes at the wavelengths of 250 nm and 2300 nm. The two figures on the left and the two on the right have different length scales in order to make the images of the mode field clear. (b) TE modal absorption versus wavelength for various L values of the nanowire array (indicated using different colors). Inset: 2D schematic of the structure. The number of nanowires is N and the length of a single nanowire in the array is L; the total length of the nanowire is thus N × L. D represents the diameter of the MF, and T, W, and S are the thickness, width, and space of the NbN nanowires.
Fig. 2
Fig. 2 (a) Photograph of chip-mounting block with the MF-coupled SNSPD. The SNSPD chip is located within the red dotted frame. The MF was bent into a U-shape and then placed on the chip, its location is highlighted using a yellow dotted line because the MF is too thin to be seen in the photograph. (b) Optical image of the MF-coupled SNSPD. The inset (c) shows the SEM image of the nanowires without the MF on top (with red pseudo-coloring), and insert (d) shows a partial enlargement of the nanowires.
Fig. 3
Fig. 3 Schematics of the measurement system which contains the optical system, the cryocooler and the circuit system. The optical system is composed by a supercontinuum laser, an acousto-optic tunable filter (AOTF), two attenuators, a polarization controller, power meters for the detector port and monitor port, and SMF-28e fibers to connect all of them together; the cryocooler is prepared to provide a 2.1 K environment for the MF-coupled SNSPD; the circuit system consists of a bias tee, a 100 KΩ resistor, a DC voltage and a room-temperature 50 dB low-noise amplifier (AMP) to amplify the voltage pulses generated by the SNSPD, and an oscilloscope or a photon counter to monitor and count the amplified signals.
Fig. 4
Fig. 4 (a) SDE versus bias current at various wavelengths (indicated using different colors). The hollow dotted line represents the dark count rate as a function of bias current. (b) SDE versus wavelength over the range from 500 to 1700 nm. The red dashed line represents the simulated TE modal absorption, while the measured SDE is the black dotted line, the yellow diamond and blue dotted lines represent calculated SDEs with and without saturation correction, respectively, and the purple dotted line is the measured initial optical loss of the MF.

Metrics