Abstract

The annular laser beam (ALB) is widely used in many fields, which could be affected by laser power and beam quality. To effectively and flexibly improve the beam quality of high-power large-aperture thin-wall ALB, a two-stage enlargement and adaptive correction configuration (TEACC) consisting of a novel outer-surface tubular deformable mirror (OTDM) and two extra prism groups (EPGs) is proposed in this paper. The correction principle and design principle of the TEACC are derived and analyzed. Based on the principle, a typical OTDM prototype and EPG structure are designed. Annular aberrations are compensated by applying the OTDM’s influence functions and the least-square algorithm in simulation. The results show that the TEACC could perfectly compensate the wavefront distortions described by the 2nd to 36th order Zernike annular aberrations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam

Chuang Sun, Lei Huang, Deen Wang, Xuewei Deng, Dongxia Hu, Licheng Sun, and Yamin Zheng
Opt. Express 27(6) 9215-9231 (2019)

Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices

Mo Zohrabi, Robert H. Cormack, Connor Mccullough, Omkar D. Supekar, Emily A. Gibson, Victor M. Bright, and Juliet T. Gopinath
Opt. Express 25(25) 31451-31461 (2017)

Wavefront correction by a low-cost deformable mirror group in a small-aperture-beam fiber laser

Lei Huang, Chenlu Zhou, Xingkun Ma, Meng Yan, and Junbiao Fan
Appl. Opt. 56(8) 2176-2182 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with an annular beam: theoretical approach,” Appl. Opt. 44(34), 7467–7474 (2005).
    [Crossref]
  2. T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with an annular beam: experiment,” Appl. Opt. 44(34), 7407–7413 (2005).
    [Crossref]
  3. H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
    [Crossref]
  4. M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
    [Crossref]
  5. J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
    [Crossref]
  6. W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
    [Crossref]
  7. M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
    [Crossref]
  8. G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
    [Crossref]
  9. S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.
  10. U. Wittrock and H. Weber, “Inside-pumped Nd: YAG tube laser,” Opt. Lett. 16(14), 1092–1094 (1991).
    [Crossref]
  11. L. C. Sun, Y. D. Guo, C. F. Shao, Y. Li, Y. M. Zheng, C. Sun, X. J. Wang, and L. Huang, “10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd:YAG oscillator and an extra-cavity adaptive optics system,” Opt. Lett. 43(17), 4160–4163 (2018).
    [Crossref]
  12. K. Yasui and J. Nishimae, “Beam-mode calculations of a strongly pumped solid-state rod laser with an unstable resonator,” Opt. Lett. 19(8), 560–562 (1994).
    [Crossref]
  13. W. P. Wang, F. L. Tan, B. D. Lü, and C. L. Liu, “Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows,” Appl. Opt. 44(34), 7442–7450 (2005).
    [Crossref]
  14. Y. F. Peng, Z. X. Sheng, H. Zhang, and X. W. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43(35), 6465–6472 (2004).
    [Crossref]
  15. X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
    [Crossref]
  16. B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
    [Crossref]
  17. M. Chen, C. Liu, D. M. Rui, and H. Xian, “Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle,” Opt. Express 26(4), 4230–4242 (2018).
    [Crossref]
  18. R. Li, M. Griffith, L. Laycock, and W. Lubeigt, “Controllable continuous-wave Nd: YVO4 self-Raman lasers using intracavity adaptive optics,” Opt. Lett. 39(16), 4762–4765 (2014).
    [Crossref]
  19. M. Eichenberger, F. Giorgianni, N. Sauerwein, C. Vicario, and C. P. Hauri, “Deformable mirror for wavefront shaping of infrared radiation,” Opt. Lett. 43(9), 2062–2065 (2018).
    [Crossref]
  20. N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
    [Crossref]
  21. L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
    [Crossref]
  22. B. P. Wallace, P. J. Hampton, C. H. Bradley, and R. Conan, “Evaluation of a MEMS deformable mirror for an adaptive optics test bench,” Opt. Express 14(22), 10132–10138 (2006).
    [Crossref]
  23. D. Guzmán, F. J. D. C. Juez, R. Myers, A. Guesalaga, and F. S. Lasheras, “Modeling a MEMS deformable mirror using non-parametric estimation techniques,” Opt. Express 18(20), 21356–21369 (2010).
    [Crossref]
  24. S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
    [Crossref]
  25. A. R. Bayanna, R. E. Louis, S. Chatterjee, S. K. Mathew, and P. Venkatakrisnan, “Membrane-based deformable mirror: intrinsic aberrations and alignment issues,” Appl. Opt. 54(7), 1727–1736 (2015).
    [Crossref]
  26. L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38(1), 168–176 (1999).
    [Crossref]
  27. A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
    [Crossref]
  28. S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
    [Crossref]
  29. G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE 5894, 58940B (2005).
    [Crossref]
  30. S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
    [Crossref]
  31. C. Sun, L. C. Sun, Y. M. Zheng, S. B. Lin, and L. Huang, “Theoretical and experimental research on temperature-induced surface distortion of deformable mirror,” Opt. Express 26(24), 32205–32223 (2018).
    [Crossref]
  32. M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE 5166, 172 (2004).
    [Crossref]
  33. C. Sun, L. Huang, D. E. Wang, X. W. Deng, D. X. Hu, L. C. Sun, and Y. M. Zheng, “Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam,” Opt. Express 27(6), 9215–9231 (2019).
    [Crossref]
  34. X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
    [Crossref]
  35. U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
    [Crossref]
  36. J. Z. Peng, Y. J. Yu, and H. F. Xu, “Compensation of high-order misalignment aberrations in cylindrical interferometry,” Appl. Opt. 53(22), 4947–4957 (2014).
    [Crossref]
  37. M. Tabatabaian, COMSOL for Engineers (Mercury Learning & Information, 2014).
  38. R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, 2011).
  39. F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
    [Crossref]
  40. W. Swantner and W. W. Chow, “Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes,” Appl. Opt. 33(10), 1832–1837 (1994).
    [Crossref]
  41. M. Bass, Handbook of Optics, (McGraw Hill, 2010), Volume II, Chap. 11.

2019 (4)

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

C. Sun, L. Huang, D. E. Wang, X. W. Deng, D. X. Hu, L. C. Sun, and Y. M. Zheng, “Theoretical research on the novel adaptive optics configuration based on the tubular deformable mirror for the aberration correction of the annular laser beam,” Opt. Express 27(6), 9215–9231 (2019).
[Crossref]

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

2018 (4)

2016 (1)

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

2015 (2)

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

A. R. Bayanna, R. E. Louis, S. Chatterjee, S. K. Mathew, and P. Venkatakrisnan, “Membrane-based deformable mirror: intrinsic aberrations and alignment issues,” Appl. Opt. 54(7), 1727–1736 (2015).
[Crossref]

2014 (3)

2012 (2)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

2010 (2)

2009 (1)

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

2008 (1)

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

2006 (3)

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

B. P. Wallace, P. J. Hampton, C. H. Bradley, and R. Conan, “Evaluation of a MEMS deformable mirror for an adaptive optics test bench,” Opt. Express 14(22), 10132–10138 (2006).
[Crossref]

2005 (4)

2004 (3)

Y. F. Peng, Z. X. Sheng, H. Zhang, and X. W. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43(35), 6465–6472 (2004).
[Crossref]

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
[Crossref]

M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE 5166, 172 (2004).
[Crossref]

2000 (1)

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

1999 (2)

1995 (1)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

1994 (2)

1991 (1)

Altay, S.

H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Anderson, D. Z.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Arnold, C. B.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Balasa, I.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Bartsch, D. U.

Bass, M.

M. Bass, Handbook of Optics, (McGraw Hill, 2010), Volume II, Chap. 11.

Bayanna, A. R.

Baykal, Y.

H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Bellaiche, L.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Bierden, P. A.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

Bifano, T. G.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

Bradley, C. H.

Burgur, L.

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Cabral, M. J.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Chaloupka, J. L.

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Chatterjee, S.

Chen, L. Q.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Chen, M.

Chen, S. Q.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Cheng, X. B.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Cheng, Z. X.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Chow, W. W.

Conan, R.

Cornelissen, S. A.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

Cornell, E. A.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Deng, X. W.

Dickey, E. C.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Dong, H.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Dong, L. Z.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Dong, S. Y.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Duocastella, M.

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Ealey, M.

M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE 5166, 172 (2004).
[Crossref]

Eichenberger, M.

Eyyuboglu, H. T.

H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Fainman, Y.

Fan, X. W.

Forbes, A.

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Freeman, W. R.

Fu, X. H.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Giorgianni, F.

Griffith, M.

Guesalaga, A.

Guo, Y. D.

Guzmán, D.

Hackenberger, W.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Hampton, P. J.

Hauri, C. P.

He, X.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Hu, D. X.

Huang, L.

Ikeda, T.

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Ito, M.

Jang, M. H.

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

Jeong, M. Y.

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

Jia, Z. J.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Juez, F. J. D. C.

Kamanina, N. V.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Kamran, M. A.

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

Kognovitsky, S. O.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Kozhevnikov, N. M.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Lai, B. H.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Lam, C. V.

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

Lasheras, F. S.

Latham, W. P.

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

Laycock, L.

LeBeau, J. M.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Li, F.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Li, R.

Li, Y.

Lin, S. B.

Litvin, I.

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Liu, C.

Liu, C. L.

Liu, D.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Liu, W. J.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Liu, X. D.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Liu, Y.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Loktev, M.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE 5894, 58940B (2005).
[Crossref]

Louis, R. E.

Lü, B. D.

Lubeigt, W.

Luo, J.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Mathew, S. K.

Meyerhofer, D. D.

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Montgomery, D.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Myers, R.

Ngcobo, S.

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Nishimae, J.

Ogawa, T.

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Ogura, K.

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.

Okamura, Y.

Pang, Q. S.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Paschel, S.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Peng, J. Z.

Peng, Y. F.

Pryor, R. W.

R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, 2011).

Rausch, P.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

Renn, M. J.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Ristau, D.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Rui, D. M.

Sauerwein, N.

Shao, C. F.

Sheng, Z. X.

Shiina, T.

Shrout, T. R.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Simonov, A.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE 5894, 58940B (2005).
[Crossref]

Song, Z.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Sun, C.

Sun, L. C.

Sun, P. C.

Swantner, W.

Tabatabaian, M.

M. Tabatabaian, COMSOL for Engineers (Mercury Learning & Information, 2014).

Tahira, U.

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

Takashima, Y.

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.

Tamura, S.

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.

Tan, F. L.

Tang, G. M.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Taylor, S.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Thomas, S.

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
[Crossref]

Tokovinin, A.

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
[Crossref]

Tsuboi, A.

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Vasilenko, N. A.

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

Vdovin, G.

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE 5894, 58940B (2005).
[Crossref]

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
[Crossref]

Vdovin, O.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Venkatakrisnan, P.

Verpoort, S.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
[Crossref]

Vicario, C.

Wallace, B. P.

Wang, C.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Wang, D. E.

Wang, J. L.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Wang, S.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Wang, W. P.

Wang, X. J.

Wang, Z.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Wang, Z. S.

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Weber, H.

Wieman, C. E.

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

Wittrock, U.

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
[Crossref]

U. Wittrock and H. Weber, “Inside-pumped Nd: YAG tube laser,” Opt. Lett. 16(14), 1092–1094 (1991).
[Crossref]

Xian, H.

Xu, B.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Xu, G. J.

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

Xu, H. F.

Xu, Z.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Yamakawa, M.

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.

Yang, K. J.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Yang, P.

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

Yasui, K.

Yoshida, K.

Yu, Y. J.

Zhang, C. X.

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Zhang, H.

Zhang, S. J.

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Zheng, Y. M.

Zhu, L. J.

Appl. Opt. (9)

W. Swantner and W. W. Chow, “Gram-Schmidt orthonormalization of Zernike polynomials for general aperture shapes,” Appl. Opt. 33(10), 1832–1837 (1994).
[Crossref]

L. J. Zhu, P. C. Sun, D. U. Bartsch, W. R. Freeman, and Y. Fainman, “Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation,” Appl. Opt. 38(1), 168–176 (1999).
[Crossref]

Y. F. Peng, Z. X. Sheng, H. Zhang, and X. W. Fan, “Influence of thermal deformations of the output windows of high-power laser systems on beam characteristics,” Appl. Opt. 43(35), 6465–6472 (2004).
[Crossref]

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with an annular beam: experiment,” Appl. Opt. 44(34), 7407–7413 (2005).
[Crossref]

W. P. Wang, F. L. Tan, B. D. Lü, and C. L. Liu, “Three-dimensional calculation of high-power, annularly distributed, laser-beam-induced thermal effects on reflectors and windows,” Appl. Opt. 44(34), 7442–7450 (2005).
[Crossref]

T. Shiina, K. Yoshida, M. Ito, and Y. Okamura, “In-line type micropulse lidar with an annular beam: theoretical approach,” Appl. Opt. 44(34), 7467–7474 (2005).
[Crossref]

S. Verpoort and U. Wittrock, “Actuator patterns for unimorph and bimorph deformable mirrors,” Appl. Opt. 49(31), G37–G46 (2010).
[Crossref]

J. Z. Peng, Y. J. Yu, and H. F. Xu, “Compensation of high-order misalignment aberrations in cylindrical interferometry,” Appl. Opt. 53(22), 4947–4957 (2014).
[Crossref]

A. R. Bayanna, R. E. Louis, S. Chatterjee, S. K. Mathew, and P. Venkatakrisnan, “Membrane-based deformable mirror: intrinsic aberrations and alignment issues,” Appl. Opt. 54(7), 1727–1736 (2015).
[Crossref]

Chin. Opt. Lett. (1)

B. H. Lai, L. Z. Dong, S. Q. Chen, G. M. Tang, W. J. Liu, S. Wang, X. He, K. J. Yang, P. Yang, B. Xu, C. Wang, X. D. Liu, Q. S. Pang, and Y. Liu, “Hybrid adaptive optics system for a solid-state zigzag master oscillator power amplifier laser system,” Chin. Opt. Lett. 14(9), 91402–91405 (2016).
[Crossref]

J. Laser Appl. (1)

G. J. Xu, A. Tsuboi, T. Ogawa, and T. Ikeda, “Super-short times laser welding of thermoplastic resins using a ring beam optics,” J. Laser Appl. 20(2), 116–121 (2008).
[Crossref]

J. Micro-nanolith. Mem. (1)

S. A. Cornelissen, P. A. Bierden, T. G. Bifano, and C. V. Lam, “4096-element continuous face-sheet MEMS deformable mirror for high-contrast imaging,” J. Micro-nanolith. Mem. 8(3), 031308 (2009).
[Crossref]

J. Opt. (1)

L. Burgur, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 015604 (2015).
[Crossref]

Laser Photonics Rev. (1)

M. Duocastella and C. B. Arnold, “Bessel and annular beams for materials processing,” Laser Photonics Rev. 6(5), 607–621 (2012).
[Crossref]

Light: Sci. Appl. (1)

X. B. Cheng, S. Y. Dong, Z. Song, S. Paschel, I. Balasa, D. Ristau, and Z. S. Wang, “Waterproof coatings for high-power laser cavities,” Light: Sci. Appl. 8(1), 12 (2019).
[Crossref]

Microelectron. Eng. (1)

U. Tahira, M. A. Kamran, M. H. Jang, and M. Y. Jeong, “Thin-film coating on cylinder for fabrication of cylindrical mold: Roll-to-roll nano-imprint lithography,” Microelectron. Eng. 211, 5–12 (2019).
[Crossref]

Opt. Commun. (1)

H. T. Eyyuboglu, S. Altay, and Y. Baykal, “Propagation characteristics of higher-order annular Gaussian beams in atmospheric turbulence,” Opt. Commun. 264(1), 25–34 (2006).
[Crossref]

Opt. Eng. (1)

W. P. Latham, “Shaping of annular laser intensity profiles and their thermal effects for optical trepanning,” Opt. Eng. 45(1), 014301 (2006).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

M. J. Renn, D. Montgomery, O. Vdovin, D. Z. Anderson, C. E. Wieman, and E. A. Cornell, “Laser-Guided Atoms in Hollow-Core Optical Fibers,” Phys. Rev. Lett. 75(18), 3253–3256 (1995).
[Crossref]

J. L. Chaloupka and D. D. Meyerhofer, “Observation of Electron Trapping in an Intense Laser Beam,” Phys. Rev. Lett. 83(22), 4538–4541 (1999).
[Crossref]

Proc. SPIE (6)

N. V. Kamanina, N. A. Vasilenko, S. O. Kognovitsky, and N. M. Kozhevnikov, “LC SLM with Fullerene- Dye- Polyimide Photosensitive Layer,” Proc. SPIE 3951, 174–178 (2000).
[Crossref]

A. Tokovinin, S. Thomas, and G. Vdovin, “Using 50-mm electrostatic membrane deformable mirror in astronomical adaptive optics,” Proc. SPIE 5490, 580 (2004).
[Crossref]

G. Vdovin, M. Loktev, and A. Simonov, “Low-cost deformable mirrors: technologies and goals,” Proc. SPIE 5894, 58940B (2005).
[Crossref]

S. Verpoort, P. Rausch, and U. Wittrock, “Characterization of a miniaturized unimorph deformable mirror for high power cw-solid state lasers,” Proc. SPIE 8253, 825309 (2012).
[Crossref]

M. Ealey, “High Density Deformable Mirrors to Enable Coronagraphic Planet Detection,” Proc. SPIE 5166, 172 (2004).
[Crossref]

X. H. Fu, Z. Wang, Z. J. Jia, H. Dong, D. Liu, and C. X. Zhang, “Research on the Polishing Technology of High-precision Aspherical Cylindrical Lens,” Proc. SPIE 9281, 92812E (2014).
[Crossref]

Science (1)

F. Li, M. J. Cabral, B. Xu, Z. X. Cheng, E. C. Dickey, J. M. LeBeau, J. L. Wang, J. Luo, S. Taylor, W. Hackenberger, L. Bellaiche, Z. Xu, L. Q. Chen, T. R. Shrout, and S. J. Zhang, “Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals,” Science 364(6437), 264–268 (2019).
[Crossref]

Other (4)

M. Bass, Handbook of Optics, (McGraw Hill, 2010), Volume II, Chap. 11.

M. Tabatabaian, COMSOL for Engineers (Mercury Learning & Information, 2014).

R. W. Pryor, Multiphysics Modeling Using COMSOL: A First Principles Approach (Jones and Bartlett Publishers, 2011).

S. Tamura, M. Yamakawa, Y. Takashima, and K. Ogura, “Instability of Thin-Walled Annular Beam in Dielectric-Loaded Cylindrical Waveguide,” Proceedings of ITC/ISHW (2007), P1-011.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. (a) Near field intensity distribution of the ALB; (b) Effective actuators of the CDM covered by the vertical incident ALB; (c) Effective actuators covered by the 3.28-time expanded ALB.
Fig. 2.
Fig. 2. (a) The TEACC based on the OTDM. (b) Cross section of the TCS.
Fig. 3.
Fig. 3. The XOY-section diagram (a) and the $\rho $OZ-section diagram (b) of the ALB wavefront transformation from plane to outer cylindrical surface.
Fig. 4.
Fig. 4. (a) and (b) are the distributions of ${\Gamma _{c12}}$ with ${\alpha _\textrm{1}}$ and ${L_\textrm{1}}$ when n = 1.4 and n = 1.8, respectively; (c) and (d) are the influence of ${L_\textrm{1}}$[along the horizontal black line in (b)] and ${\alpha _\textrm{1}}$[along the vertical black line in (b)] on ${\Gamma _{c12}}$, respectively.
Fig. 5.
Fig. 5. (a) and (b) are the distributions of ${\Gamma _c}$ with different ${\alpha _\textrm{2}}$ and ${L_\textrm{2}}$ when n = 1.4 and n = 1.8, respectively, ${\Gamma _{c12}}$ = 3.85; (c) and (d) are the influence of ${L_\textrm{2}}$[along the horizontal black line in (b)] and ${\alpha _\textrm{2}}$[along the vertical black line in (b)] on ${\Gamma _{c12}}$, respectively.
Fig. 6.
Fig. 6. When other parameters of the TCS unit are fixed in practical system, (a) show the curves between angle ${\alpha _\textrm{2}}$ and distance ${L_\textrm{2}}$ (black line)/ distance ${L_\textrm{1}}$ (red line) to achieve the target circumferential magnification ${\Gamma _c}$ (3.57); (b) is the relationship between distance ${L_\textrm{1}}$ and circumferential magnification ${\Gamma _c}$.
Fig. 7.
Fig. 7. Prototype of the OTDM. (a) is the 3D views; (b) and (d) are the radial and circumferential cross sections, respectively; (c) shows the partial enlarged drawing of (b) and (d). (e) is the distribution of the actuators’ posts on the OTDM.
Fig. 8.
Fig. 8. Distribution of the actuators in the circumferential direction; (a) is the circumferential cross section of the OTDM; (b) is the partial enlarged drawing of (a).
Fig. 9.
Fig. 9. (a) is unfolded view of the outer cylindrical surface of the OTDM (in grey) and the cylindrical wavefront (in orange); (d) is the equivalent effective actuators on the ALB. (b) and (c) are the partial enlarged views of the red dash areas marked in (a) and (d), respectively.
Fig. 10.
Fig. 10. (a1), (b1) and (c1) represent the IF-ICS of No.1, No.5 and No. 9 actuators in Fig. 7(e), respectively. (a2), (b2) and (c2) represent the IFs-AW of No.1, No.5 and No. 9 actuators in Fig. 7(e), respectively. The 3rd row depict the partial enlarged views of the 2nd row.
Fig. 11.
Fig. 11. The 2nd, 4th, 7th, 11th Zernike annular aberrations (1st column) and correction residues based on different AO system: conventional DM without expand system (2nd column), conventional DM with 3.28-times expand system (3rd column), and OTDM (4th column). [The 2nd to 36th Zernike annular aberrations and correction residues are listed in Figs. 1316 in the Appendix]
Fig. 12.
Fig. 12. (a) is PV values of the original aberration and correction residues; (b) is the normalized correction residues.
Fig. 13.
Fig. 13. 2nd - 9th Zernike annular aberrations (1st column) and correction residues based on different AO system: 1-CDM (2nd column), 3.28-CDM (3rd column), and OTDM (4th column).
Fig. 14.
Fig. 14. 10th - 18th Zernike annular aberrations (1st column) and correction residues based on different AO system: 1-CDM (2nd column), 3.28-CDM (3rd column), and OTDM (4th column).
Fig. 15.
Fig. 15. 19th - 27th Zernike annular aberrations (1st column) and correction residues based on different AO system: 1-CDM (2nd column), 3.28-CDM (3rd column), and OTDM (4th column).
Fig. 16.
Fig. 16. 28th - 36th Zernike annular aberrations (1st column) and correction residues based on different AO system: 1-CDM (2nd column), 3.28-CDM (3rd column), and OTDM (4th column).

Tables (2)

Tables Icon

Table 1. Primary parameters of the designed OTDM prototype

Tables Icon

Table 2. Material parameters in the finite element simulation

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

{ Γ c = P O T D M / P O T D M P A L B P A L B Γ r = L / L Δ r Δ r
A 1 D 1 = A 1 D 2 D 1 D 2 = A 2 D 2 cot β 1 A 2 D 2 cot α 1 = L 1
Δ r 12 = r A 2 r A 1 = A 2 D 2 = L 1 / L 1 ( cot β 1 cot α 1 ) ( cot β 1 cot α 1 )
z A 3 = r A 2 tan γ
z A = ( r A 2 R D ) cot β 2 r A 2 tan γ = r A 2 ( cot β 2 tan γ ) R D cot β 2
β 2 = arcsin[ n sin ( γ ) ] γ
R D = r m 2 ( L 2 + r m 2 tan γ ) tan β 2
{ x A = x o R D / x o 2 + y o 2 y A = y o R D / x o 2 + y o 2 r A 2 = x o 2 + y o 2 + L 1 / ( cot β 1 cot α 1 ) z A = r A 2 ( cot β 2 tan γ ) R D cot β 2
r A 1 = r A 2 Δ r 12 = [ z D + R D cot β 2 ] / ( cot β 2 tan γ ) L 1 / ( cot β 1 cot α 1 )
{ x A 1 = x D r A 1 / x D 2 + y D 2 y A 1 = y D r A 1 / x D 2 + y D 2
Γ r = cot β 2 cot α 2
{ Γ c = r m 2 ( 1 cot α 2 tan β 2 ) L 2 tan β 2 r m 1 = Γ c 12 ( 1 cot α 2 tan β 2 ) L 2 tan β 2 r m 1 Γ c 12 = r m 2 r m 1 = r m 1 + Δ r 12 r m 1 = 1 + L 1 r m 1 ( cot β 1 cot α 1 )
l = θ 0 2 π × 2 π R B > d R B > d θ 0
R D = R B + h P Z T + h p o s t + h g
{ r D i = [ ( L 2 H / 2 ) + R D cot β 2 ] / ( cot β 2 tan γ ) L 1 / ( cot β 1 cot α 1 ) r D o = [ ( L 2 + H / 2 ) + R D cot β 2 ] / ( cot β 2 tan γ ) L 1 / ( cot β 1 cot α 1 )
h c k = θ 0 r c k = θ 0 [ r o [ k 1 ] h r ]
Δ ω = Δ ω sin ( β 2 )

Metrics