Abstract

In an ultra-intense femtosecond chirped-pulse amplification laser, the imperfect diffraction wave-fronts of the second and the third gratings of the compressor, where spatio-spectral coupling exists, could introduce a complex spatiotemporal coupling distortion (STCD) and degrade the pulsed beam in both near- and far-fields. Here, we propose a method of double-compressors for pre-compensation. By inserting a scaled down compressor (small compressor) with a deformable retro-reflection mirror into the beam-line, the frequency-dependent wave-front distortion, i.e., the complex STCD, could be removed. We simulate the results in two different ultra-intense femtosecond lasers with 80 and 400 nm bandwidths for comparison, and near ideal focused peak intensities could be obtained in both cases. Meanwhile, the influences of several miss-matching effects, which might appear in engineering, are also analyzed and discussed for applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain

Zhaoyang Li and Noriaki Miyanaga
Opt. Express 26(7) 8453-8469 (2018)

Arbitrarily distorted 2-dimensional pulse-front measurement and reliability analysis

Zhaoyang Li, Jumpei Ogino, Shigeki Tokita, and Junji Kawanaka
Opt. Express 27(9) 13292-13306 (2019)

Wavefront analysis of high-efficiency, large-scale, thin transmission gratings

Chun Zhou, Takashi Seki, Tsuyoshi Kitamura, Yoshiyuki Kuramoto, Takashi Sukegawa, Nobuhisa Ishii, Teruto Kanai, Jiro Itatani, Yohei Kobayashi, and Shuntaro Watanabe
Opt. Express 22(5) 5995-6008 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [Crossref]
  2. Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
    [Crossref]
  3. D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  4. A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
    [Crossref]
  5. M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).
    [Crossref] [PubMed]
  6. Extreme Light Infrastructure Nuclear Physics (ELI-NP), http://www.eli-np.ro/ .
  7. W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, and Z. Xu, “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).
    [Crossref] [PubMed]
  8. E. Cartlidge, “The light fantastic,” Science 359(6374), 382–385 (2018).
    [Crossref] [PubMed]
  9. D. Powell, “Europe sets sights on lasers,” Nature 500(7462), 264–265 (2013).
    [Crossref] [PubMed]
  10. S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
    [Crossref] [PubMed]
  11. S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
    [Crossref]
  12. T. Nagy and G. Steinmeyer, “A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
    [Crossref]
  13. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).
  14. Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
    [Crossref]
  15. Z. Li and N. Miyanaga, “Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain,” Opt. Express 26(7), 8453–8469 (2018).
    [Crossref] [PubMed]
  16. Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
    [Crossref] [PubMed]
  17. C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
    [Crossref]
  18. A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
    [Crossref]
  19. P. Bowlan, P. Gabolde, M. A. Coughlan, R. Trebino, and R. J. Levis, “Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution,” J. Opt. Soc. Am. B 25(6), A81–A92 (2008).
    [Crossref]
  20. B. Alonso, Í. J. Sola, Ó. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude-and-phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B 27(5), 933–940 (2010).
    [Crossref]
  21. M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
    [Crossref] [PubMed]
  22. C. Dorrer and S.-W. Bahk, “Spatio-spectral characterization of broadband fields using multispectral imaging,” Opt. Express 26(25), 33387–33399 (2018).
    [Crossref] [PubMed]
  23. P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
    [Crossref] [PubMed]
  24. A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
    [Crossref] [PubMed]
  25. C. Dorrer and I. A. Walmsley, “Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses,” Opt. Lett. 27(21), 1947–1949 (2002).
    [Crossref] [PubMed]
  26. C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
    [Crossref] [PubMed]
  27. C. Dorrer, “Spatiotemporal Metrology of Broadband Optical Pulses,” IEEE J. Quantum Electron. 25(4), 3100216 (2019).
  28. Z. Bor, Z. Gogolák, and G. Szabó, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
    [Crossref] [PubMed]
  29. S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11(5), 491–501 (2003).
    [Crossref] [PubMed]
  30. Z. Li, N. Miyanaga, and J. Kawanaka, “Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry,” Opt. Lett. 43(13), 3156–3159 (2018).
    [Crossref] [PubMed]
  31. G. Figueira, L. Braga, S. Ahmed, A. Boyle, M. Galimberti, M. Galletti, and P. Oliveira, “Simultaneous measurement of pulse front tilt and pulse duration with a double trace autocorrelator,” J. Opt. Soc. Am. B 36(2), 366–373 (2019).
    [Crossref]
  32. Z. Li, J. Ogino, S. Tokita, and J. Kawanaka, “Arbitrarily distorted 2-dimensional pulse-front measurement and reliability analysis,” Opt. Express 27(9), 13292–13306 (2019).
    [Crossref] [PubMed]
  33. S. W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
    [Crossref] [PubMed]
  34. B. Sun, P. S. Salter, and M. J. Booth, “Pulse front adaptive optics: a new method for control of ultrashort laser pulses,” Opt. Express 23(15), 19348–19357 (2015).
    [Crossref] [PubMed]
  35. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  36. Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
    [Crossref]
  37. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14(9), 2348–2358 (1997).
    [Crossref]
  38. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [Crossref] [PubMed]
  39. Fastlite, “Dazzler”, http://www.fastlite.com/en/ .
  40. D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
    [Crossref] [PubMed]
  41. H. Fattahi, H. G. Barros, M. Gorjan, T. Nubbemeyer, B. Alsaif, C. Y. Teisset, M. Schultze, S. Prinz, M. Haefner, M. Ueffing, A. Alismail, L. Vámos, A. Schwarz, O. Pronin, J. Brons, X. T. Geng, G. Arisholm, M. Ciappina, V. S. Yakovlev, D. Kim, A. M. Azzeer, N. Karpowicz, D. Sutter, Z. Major, T. Metzger, and F. Krausz, “Third-generation femtosecond technology,” Optica 1(1), 45–63 (2014).
    [Crossref]
  42. D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
    [Crossref] [PubMed]
  43. Z. Li and J. Kawanaka, “Possible method for a single-cycle 100 petawatt laser with wide-angle non-collinear optical parametric chirped pulse amplification,” OSA Continuum 2(4), 1125–1137 (2019).
    [Crossref]
  44. Z. Li, T. Kurita, and N. Miyanaga, “Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method,” Appl. Opt. 56(30), 8513–8519 (2017).
    [Crossref] [PubMed]
  45. P. Zhou and J. H. Burge, “Analysis of wavefront propagation using the Talbot effect,” Appl. Opt. 49(28), 5351–5359 (2010).
    [Crossref] [PubMed]
  46. J. P. Zou, A. M. Sautivet, J. Fils, L. Martin, K. Abdeli, C. Sauteret, and B. Wattellier, “Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility,” Appl. Opt. 47(5), 704–710 (2008).
    [Crossref] [PubMed]
  47. S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
    [Crossref]

2019 (6)

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

C. Dorrer, “Spatiotemporal Metrology of Broadband Optical Pulses,” IEEE J. Quantum Electron. 25(4), 3100216 (2019).

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

G. Figueira, L. Braga, S. Ahmed, A. Boyle, M. Galimberti, M. Galletti, and P. Oliveira, “Simultaneous measurement of pulse front tilt and pulse duration with a double trace autocorrelator,” J. Opt. Soc. Am. B 36(2), 366–373 (2019).
[Crossref]

Z. Li and J. Kawanaka, “Possible method for a single-cycle 100 petawatt laser with wide-angle non-collinear optical parametric chirped pulse amplification,” OSA Continuum 2(4), 1125–1137 (2019).
[Crossref]

Z. Li, J. Ogino, S. Tokita, and J. Kawanaka, “Arbitrarily distorted 2-dimensional pulse-front measurement and reliability analysis,” Opt. Express 27(9), 13292–13306 (2019).
[Crossref] [PubMed]

2018 (6)

2017 (3)

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Z. Li, T. Kurita, and N. Miyanaga, “Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method,” Appl. Opt. 56(30), 8513–8519 (2017).
[Crossref] [PubMed]

2016 (3)

T. Nagy and G. Steinmeyer, “A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

2015 (1)

2014 (3)

2013 (1)

D. Powell, “Europe sets sights on lasers,” Nature 500(7462), 264–265 (2013).
[Crossref] [PubMed]

2010 (4)

2008 (2)

2007 (1)

2006 (2)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

2005 (1)

2003 (2)

2002 (2)

2000 (2)

1997 (1)

1994 (1)

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

1992 (1)

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

1989 (2)

1985 (1)

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Abdeli, K.

Ahmed, S.

Akahane, Y.

Akturk, S.

Alismail, A.

Alonso, B.

Alsaif, B.

Aoyama, M.

Arisholm, G.

Arnold, C. L.

Azzeer, A. M.

Bahk, S. W.

Bahk, S.-W.

Barros, H. G.

Bergues, B.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Blanchot, N.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Booth, M. J.

Bor, Z.

Borot, A.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
[Crossref] [PubMed]

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Bowlan, P.

Boyle, A.

Braga, L.

Bromage, J.

Brons, J.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Burge, J. H.

Cao, H.

Cardenas, D. E.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Cartlidge, E.

E. Cartlidge, “The light fantastic,” Science 359(6374), 382–385 (2018).
[Crossref] [PubMed]

Charalambidis, D.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Chen, L.

Cheng, Z.

Chou, S. W.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Ciappina, M.

Coughlan, M. A.

Dallari, W.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Dorrer, C.

Dubietis, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Dugan, M. A.

Fattahi, H.

Figueira, G.

Fils, J.

Fiorini, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Földes, I. B.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Gabolde, P.

Galimberti, M.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Galletti, M.

Gan, Z.

Geng, X. T.

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Gogolák, Z.

Gonsalves, A. J.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Gorjan, M.

Gu, X.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[Crossref] [PubMed]

Guo, C.

Guo, Z.

Haefner, M.

Hang, Y.

Harth, A.

Hatsagortsyan, K. Z.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

He, M.

Hernández-Toro, J.

Herrmann, D.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[Crossref] [PubMed]

Hu, S. X.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Huang, P.

Inoue, N.

Jeandet, A.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Jolly, S. W.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Jonušauskas, G.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Karpowicz, N.

Kawanaka, J.

Keitel, C. H.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Kim, D.

Kimmel, M.

Kiriyama, H.

Kormin, D.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Kosik, E. M.

Kotur, M.

Krausz, F.

Kurita, T.

L’Huillier, A.

Laude, V.

Leemans, W. P.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Leng, Y.

Levis, R. J.

Li, R.

Li, S.

Li, W.

Li, Y.

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Li, Z.

Z. Li and J. Kawanaka, “Possible method for a single-cycle 100 petawatt laser with wide-angle non-collinear optical parametric chirped pulse amplification,” OSA Continuum 2(4), 1125–1137 (2019).
[Crossref]

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

Z. Li, J. Ogino, S. Tokita, and J. Kawanaka, “Arbitrarily distorted 2-dimensional pulse-front measurement and reliability analysis,” Opt. Express 27(9), 13292–13306 (2019).
[Crossref] [PubMed]

Z. Li, N. Miyanaga, and J. Kawanaka, “Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry,” Opt. Lett. 43(13), 3156–3159 (2018).
[Crossref] [PubMed]

Z. Li and N. Miyanaga, “Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain,” Opt. Express 26(7), 8453–8469 (2018).
[Crossref] [PubMed]

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Z. Li, T. Kurita, and N. Miyanaga, “Direction-dependent waist-shift-difference of Gaussian beam in a multiple-pass zigzag slab amplifier and geometrical optics compensation method,” Appl. Opt. 56(30), 8513–8519 (2017).
[Crossref] [PubMed]

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Liang, X.

Liu, X.

Liu, Y.

Ma, G.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Ma, J.

Major, Z.

Mao, H.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Marcus, G.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Martin, L.

Méndez, C.

Metzger, T.

Migus, A.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Miranda, M.

Miyanaga, N.

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Nagy, T.

T. Nagy and G. Steinmeyer, “A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Nakamura, K.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Nakata, Y.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Nubbemeyer, T.

O’Shea, P.

Ogino, J.

Oliveira, P.

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Pervak, V.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Piskarskas, A.

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Powell, D.

D. Powell, “Europe sets sights on lasers,” Nature 500(7462), 264–265 (2013).
[Crossref] [PubMed]

Prinz, S.

Pronin, O.

Quéré, F.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
[Crossref] [PubMed]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Razskazovskaya, O.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Rivas, D. E.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Roso, L.

Rouyer, C.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Rudawski, P.

Salamin, Y. I.

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Salter, P. S.

San Román, J.

Sauteret, C.

J. P. Zou, A. M. Sautivet, J. Fils, L. Martin, K. Abdeli, C. Sauteret, and B. Wattellier, “Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility,” Appl. Opt. 47(5), 704–710 (2008).
[Crossref] [PubMed]

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Sautivet, A. M.

Schröder, H.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Schultze, M.

Schwarz, A.

Seznec, S.

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

Sola, Í. J.

Spielmann, C.

Steinmeyer, G.

T. Nagy and G. Steinmeyer, “A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Strickland, D.

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Sun, B.

Sutter, D.

Szabó, G.

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Tan, J.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Tang, Y.

Tautz, R.

Tavella, F.

Teisset, C. Y.

Tokita, S.

Tóth, C.

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Tournois, P.

Trebino, R.

Tsakiris, G. D.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Tsubakimoto, K.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Tull, J. X.

Tzallas, P.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Ueda, H.

Ueffing, M.

Vámos, L.

Varela, Ó.

Veisz, L.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[Crossref] [PubMed]

Verluise, F.

Walmsley, I. A.

Wang, C.

Wang, J.

Warren, W. S.

Wattellier, B.

Weidman, M.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Wittmann, T.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Xu, J.

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Xu, L.

Xu, M.

Xu, Y.

Xu, Z.

Yakovlev, V. S.

Yamakawa, K.

Yao, B.

Yin, D.

Yoshida, H.

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

Yu, L.

Zaïr, A.

Zhang, X.

Zhou, P.

Zou, J. P.

Zuegel, J. D.

Appl. Opt. (3)

Appl. Phys. Express (1)

Z. Li, K. Tsubakimoto, H. Yoshida, Y. Nakata, and N. Miyanaga, “Degradation of femtosecond petawatt laser beams: spatio-temporal/spectral coupling induced by wavefront errors of compression gratings,” Appl. Phys. Express 10(10), 102702 (2017).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Fiorini, C. Sauteret, C. Rouyer, N. Blanchot, S. Seznec, and A. Migus, “Temporal aberrations due to misalignments of a stretcher-compressor system and compensation,” IEEE J. Quantum Electron. 30(7), 1662–1670 (1994).
[Crossref]

C. Dorrer, “Spatiotemporal Metrology of Broadband Optical Pulses,” IEEE J. Quantum Electron. 25(4), 3100216 (2019).

J. Opt. (1)

S. Akturk, X. Gu, P. Bowlan, and R. Trebino, “Spatio-temporal couplings in ultrashort laser pulses,” J. Opt. 12(9), 093001 (2010).
[Crossref]

J. Opt. Soc. Am. B (4)

JPhys Photonics (1)

A. Jeandet, A. Borot, K. Nakamura, S. W. Jolly, A. J. Gonsalves, C. Tóth, H. Mao, W. P. Leemans, and F. Quéré, “Spatio-temporal structure of a petawatt femtosecond laser beam,” JPhys Photonics 1(3), 035001 (2019).
[Crossref]

Nat. Photonics (1)

T. Nagy and G. Steinmeyer, “A closer look at ultra-intense lasers,” Nat. Photonics 10(8), 502–504 (2016).
[Crossref]

Nature (1)

D. Powell, “Europe sets sights on lasers,” Nature 500(7462), 264–265 (2013).
[Crossref] [PubMed]

Nature photon (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space-time characterization of ultra-intense femtosecond laser beams,” Nature photon. 10(8), 547–553 (2016).

Opt. Commun. (3)

D. Strickland and G. A. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

A. Dubietis, G. Jonušauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4), 437–440 (1992).
[Crossref]

Z. Li and N. Miyanaga, “Theoretical method for generating regular spatiotemporal pulsed-beam with controlled transverse-spatiotemporal dispersion,” Opt. Commun. 432, 91–96 (2019).
[Crossref]

Opt. Eng. (1)

S. Li, Z. Li, C. Wang, Y. Xu, Y. Li, Y. Leng, and R. Li, “Broadband spectrographic method for precision alignment of compression gratings,” Opt. Eng. 55(8), 086105 (2016).
[Crossref]

Opt. Express (9)

S. Akturk, M. Kimmel, P. O’Shea, and R. Trebino, “Measuring pulse-front tilt in ultrashort pulses using GRENOUILLE,” Opt. Express 11(5), 491–501 (2003).
[Crossref] [PubMed]

S. Akturk, X. Gu, P. Gabolde, and R. Trebino, “The general theory of first-order spatio-temporal distortions of Gaussian pulses and beams,” Opt. Express 13(21), 8642–8661 (2005).
[Crossref] [PubMed]

P. Bowlan, P. Gabolde, and R. Trebino, “Directly measuring the spatio-temporal electric field of focusing ultrashort pulses,” Opt. Express 15(16), 10219–10230 (2007).
[Crossref] [PubMed]

D. Herrmann, R. Tautz, F. Tavella, F. Krausz, and L. Veisz, “Investigation of two-beam-pumped noncollinear optical parametric chirped-pulse amplification for the generation of few-cycle light pulses,” Opt. Express 18(5), 4170–4183 (2010).
[Crossref] [PubMed]

B. Sun, P. S. Salter, and M. J. Booth, “Pulse front adaptive optics: a new method for control of ultrashort laser pulses,” Opt. Express 23(15), 19348–19357 (2015).
[Crossref] [PubMed]

C. Dorrer and S.-W. Bahk, “Spatio-spectral characterization of broadband fields using multispectral imaging,” Opt. Express 26(25), 33387–33399 (2018).
[Crossref] [PubMed]

Z. Li, J. Ogino, S. Tokita, and J. Kawanaka, “Arbitrarily distorted 2-dimensional pulse-front measurement and reliability analysis,” Opt. Express 27(9), 13292–13306 (2019).
[Crossref] [PubMed]

Z. Li and N. Miyanaga, “Simulating ultra-intense femtosecond lasers in the 3-dimensional space-time domain,” Opt. Express 26(7), 8453–8469 (2018).
[Crossref] [PubMed]

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. Express 26(20), 26444–26461 (2018).
[Crossref] [PubMed]

Opt. Lett. (10)

W. Li, Z. Gan, L. Yu, C. Wang, Y. Liu, Z. Guo, L. Xu, M. Xu, Y. Hang, Y. Xu, J. Wang, P. Huang, H. Cao, B. Yao, X. Zhang, L. Chen, Y. Tang, S. Li, X. Liu, S. Li, M. He, D. Yin, X. Liang, Y. Leng, R. Li, and Z. Xu, “339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility,” Opt. Lett. 43(22), 5681–5684 (2018).
[Crossref] [PubMed]

Z. Li, N. Miyanaga, and J. Kawanaka, “Single-shot real-time detection technique for pulse-front tilt and curvature of femtosecond pulsed beams with multiple-slit spatiotemporal interferometry,” Opt. Lett. 43(13), 3156–3159 (2018).
[Crossref] [PubMed]

M. Miranda, M. Kotur, P. Rudawski, C. Guo, A. Harth, A. L’Huillier, and C. L. Arnold, “Spatiotemporal characterization of ultrashort laser pulses using spatially resolved Fourier transform spectrometry,” Opt. Lett. 39(17), 5142–5145 (2014).
[Crossref] [PubMed]

S. W. Bahk, J. Bromage, and J. D. Zuegel, “Offner radial group delay compensator for ultra-broadband laser beam transport,” Opt. Lett. 39(4), 1081–1084 (2014).
[Crossref] [PubMed]

M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett. 28(17), 1594–1596 (2003).
[Crossref] [PubMed]

Z. Bor, Z. Gogolák, and G. Szabó, “Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry,” Opt. Lett. 14(16), 862–864 (1989).
[Crossref] [PubMed]

C. Dorrer, E. M. Kosik, and I. A. Walmsley, “Direct space time-characterization of the electric fields of ultrashort optical pulses,” Opt. Lett. 27(7), 548–550 (2002).
[Crossref] [PubMed]

C. Dorrer and I. A. Walmsley, “Simple linear technique for the measurement of space-time coupling in ultrashort optical pulses,” Opt. Lett. 27(21), 1947–1949 (2002).
[Crossref] [PubMed]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
[Crossref] [PubMed]

Z. Bor, “Distortion of femtosecond laser pulses in lenses,” Opt. Lett. 14(2), 119–121 (1989).
[Crossref] [PubMed]

Optica (1)

OSA Continuum (1)

Phys. Rep. (1)

Y. I. Salamin, S. X. Hu, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic high-power laser-matter interactions,” Phys. Rep. 427(2–3), 41–155 (2006).
[Crossref]

Rev. Mod. Phys. (1)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Sci. Rep. (1)

D. E. Rivas, A. Borot, D. E. Cardenas, G. Marcus, X. Gu, D. Herrmann, J. Xu, J. Tan, D. Kormin, G. Ma, W. Dallari, G. D. Tsakiris, I. B. Földes, S. W. Chou, M. Weidman, B. Bergues, T. Wittmann, H. Schröder, P. Tzallas, D. Charalambidis, O. Razskazovskaya, V. Pervak, F. Krausz, and L. Veisz, “Next Generation Driver for Attosecond and Laser-plasma Physics,” Sci. Rep. 7(1), 5224 (2017).
[Crossref] [PubMed]

Science (1)

E. Cartlidge, “The light fantastic,” Science 359(6374), 382–385 (2018).
[Crossref] [PubMed]

Other (2)

Extreme Light Infrastructure Nuclear Physics (ELI-NP), http://www.eli-np.ro/ .

Fastlite, “Dazzler”, http://www.fastlite.com/en/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of an ultra-intense CPA laser with double-compressors for complex STCD pre-compensation. The 2-dimensional case for a selected y-axis position is shown.
Fig. 2
Fig. 2 (a) In the spatio-spectral coupling plane, second and third gratings induced wave-front distortion (blue curve) in main compressor, deformable mirror generated pre-compensation (red curve) in small compressor, and angular dispersion induced spectrum-dependent beam separation. (b) (i-iii) Without and (iv-vi) with pre-compensation, (i) (iv) electric-field and (ii) (v) intensity distributions in the near-field, and (iii) (vi) spectral phases at x = 100, 0, and −100 mm.
Fig. 3
Fig. 3 (a) (b) Without and (d) (e) with pre-compensation, (a) (d) electric-field and (b) (e) intensity distributions in the far-field, (c) pulses at ξ = 0, and (f) spots at t = 0 without and with pre-compensation.
Fig. 4
Fig. 4 (a) In the spatio-spectral coupling plane, second and third gratings induced wave-front distortion (blue curve) in main compressor, deformable mirror generated pre-compensation (red curve) in small compressor, and angular dispersion induced spectrum-dependent beam separation. (b) In the near-field, (i-iii) without and (iv-vi) with pre-compensation, (i) (iv) electric-field and (ii) (v) intensity distributions, and (iii) (vi) spectral phases at x = 100, 0, and −100 mm. (c) In the far-field, (i) (ii) without and (iv) (v) with pre-compensation, (i) (iv) electric-field and (ii) (v) intensity distributions, (iii) pulses at ξ = 0, and (vi) spots at t = 0 without and with pre-compensation
Fig. 5
Fig. 5 (a) When the aperture of the pre-compensated wave-front produced by the deformable mirror is zooming, the focused peak intensities If as functions of the zooming coefficient p1 for (b) the 80 nm and (c) the 400 nm bandwidth lasers without and with the pre-compensation.
Fig. 6
Fig. 6 (a) When the angular dispersion induced spectral separation LΔλ is zooming, the focused peak intensities If as functions of the zooming coefficient p2 for (b) the 80 nm and (c) the 400 nm bandwidth lasers without and with the pre-compensation.
Fig. 7
Fig. 7 (a) When the deformable mirror has transverse offsets, the focused peak intensities If as functions of the offsets for (b) the 80 nm and (c) the 400 nm bandwidth lasers without and with the pre-compensation. D is the beam diameter.
Fig. 8
Fig. 8 (a) Schematic of the image relay system consisting four 4-f telescopes between the mall and the main compressors, and in a broadband laser it should use reflection telescopes for achromatic design. The focused peak intensities If as functions of the deviation Δz away from the perfect object/image planes for (b) the 80 nm and (c) the 400 nm bandwidth lasers with the pre-compensation. D is the beam diameter where the deviation occurs. The case without the pre-compensation is also shown for comparison.
Fig. 9
Fig. 9 Schematic of propagation in (a) free-space, (b) through a medium and (c) through a θ1 angle tilted medium. The refractive index in free-space and medium is n1 and n2, respectively. Spectrum-dependent coefficients p3 and p4 (θ1 = 5°) in (d) Ti:sapphire and (e) BBO crystal (o-light), respectively, and the result is normalized by the value at 800 nm.

Tables (2)

Tables Icon

Table 1 Simulation parameters of double-compressors in an 80 nm bandwidth laser.

Tables Icon

Table 2 Simulation parameters of double-compressors in a 400 nm bandwidth laser.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε= L Δλ D = ( tan β r tan β b )Gcosα D
G= ω 0 d 2 cos 3 β 0 2π ΔT 2Δλ ,
[ A B C D ]=[ f 8 f 7 0 0 f 7 f 8 ][ f 6 f 5 0 0 f 5 f 6 ][ f 4 f 3 0 0 f 3 f 4 ][ f 2 f 1 0 0 f 1 f 2 ],
[ A B C D ]=[ 1 z 1 + p 3 z 2 + z 3 0 1 ] p 3 = n 1 n 2
[ A B C D ]=[ 1 z 1 + p 4 z 2 + z 3 0 1 ], p 4 = n 1 n 2 ( cos θ 1 cos θ 2 ) 2

Metrics