Abstract

A narrow-band and high-contrast asymmetric transmission (AT) device based on metal-metal-metal (M-M-M) asymmetric grating structure is proposed and investigated. Significantly distinct from previous reports, the upper and lower metallic silver (Ag) gratings are connected by a very thin metallic Ag film, without any dielectric spacer layer or subwavelength slit. Under forward incidence, the M-M-M structure supports efficient surface plasmon polaritons (SPPs) excitation and tunneling, more importantly, it promotes direct and thus high-efficiency SPPs decoupling, enabling high forward transmittance. While under backward incidence, the M-M-M structure offers not only high reflection by the Ag film but also a strong near-field coupling effect between the upper and lower gratings, which further suppresses backward transmittance, leading to near-zero backward transmittance. In addition, the M-M-M structure is optimized for narrow-band operation by employing grating groove depth effect and multiple interference effect. Numerical simulation results demonstrate that high-performance AT with high-quality factor (Q≈91), narrow-bandwidth (6.7 nm) and high contrast ratio is achieved, with forward transmittance of 0.72 and backward transmittance of 0.0015 at visible light (610 nm). Our work provides an alternative and simple way to high-performance AT devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface

Yonghong Ling, Lirong Huang, Wei Hong, Tongjun Liu, Yali Sun, Jing Luan, and Gang Yuan
Opt. Express 25(12) 13648-13658 (2017)

Narrow-band wavelength tunable filter based on asymmetric double layer metallic grating

Yuzhang Liang, Wei Peng, Mengdi Lu, and Shuwen Chu
Opt. Express 23(11) 14434-14445 (2015)

Remote grating-assisted excitation of narrow-band surface plasmons

Tae-Woo Lee and Stephen K. Gray
Opt. Express 18(23) 23857-23864 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
    [Crossref]
  2. Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
    [Crossref]
  3. L. J. Aplet and J. W. Carson, “A Faraday Effect Optical Isolator,” Appl. Opt. 3(4), 544 (1964).
    [Crossref]
  4. E. H. Turner and R. H. Stolen, “Fiber Faraday circulator or isolator,” Opt. Lett. 6(7), 322 (1981).
    [Crossref]
  5. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
    [Crossref]
  6. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
    [Crossref]
  7. Z. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, T. Ma, X. D. Yuan, and W. M. Ye, “One-way transmission of linearly polarized light in plasmonic subwavelength metallic grating cascaded with dielectric grating,” Opt. Lett. 37(19), 4008 (2012).
    [Crossref]
  8. S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
    [Crossref]
  9. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
    [Crossref]
  10. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
    [Crossref]
  11. Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
    [Crossref]
  12. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref]
  13. A. E. Serebryannikov, A. O. Cakmak, and E. Ozbay, “Multichannel optical diode with unidirectional diffraction relevant total transmission,” Opt. Express 20(14), 14980 (2012).
    [Crossref]
  14. J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905 (2011).
    [Crossref]
  15. M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839 (2013).
    [Crossref]
  16. G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref]
  17. Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, L. Jing, W. B. Liu, and Z. Y. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
    [Crossref]
  18. X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
    [Crossref]
  19. J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
    [Crossref]
  20. P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
    [Crossref]
  21. Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, Y. L. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
    [Crossref]
  22. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
    [Crossref]
  23. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref]
  24. L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
    [Crossref]
  25. L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
    [Crossref]
  26. A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275–1299 (1965).
    [Crossref]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  28. D. Y. Liu, M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, “Enhanced asymmetric transmission due to Fabry-Perot-like cavity,” Opt. Express 22(10), 11707–11712 (2014).
    [Crossref]
  29. E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
    [Crossref]
  30. X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
    [Crossref]
  31. L. J. Meng, D. Zhao, Z. C. Ruan, Q. Li, Y. Q. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
    [Crossref]
  32. W. L. Barnes, “Surface plasmon-polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  33. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref]
  34. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
    [Crossref]
  35. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972 (2001).
    [Crossref]

2019 (1)

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

2018 (2)

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

2017 (5)

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, L. Jing, W. B. Liu, and Z. Y. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, Y. L. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
[Crossref]

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

2015 (1)

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

2014 (3)

2013 (4)

M. Stolarek, D. Yavorskiy, R. Kotyński, C. J. Zapata Rodríguez, J. Łusakowski, and T. Szoplik, “Asymmetric transmission of terahertz radiation through a double grating,” Opt. Lett. 38(6), 839 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
[Crossref]

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

2012 (3)

2011 (2)

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905 (2011).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

2010 (2)

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref]

2008 (1)

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

2006 (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

W. L. Barnes, “Surface plasmon-polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2005 (1)

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

2003 (1)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

2001 (1)

1998 (1)

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

1981 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1965 (1)

1964 (1)

Alù, A.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Aplet, L. J.

Ba, C. F.

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon-polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Battal, E.

E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
[Crossref]

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Caglayan, H.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref]

Cakmak, A. O.

Cakmakyapan, S.

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, “One-way transmission through the subwavelength slit in nonsymmetric metallic gratings,” Opt. Lett. 35(15), 2597–2599 (2010).
[Crossref]

Carson, J. W.

Chan, C. T.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Chen, J.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

J. Xu, C. Cheng, M. Kang, J. Chen, Z. Zheng, Y. X. Fan, and H. T. Wang, “Unidirectional optical transmission in dual-metal gratings in the absence of anisotropic and nonlinear materials,” Opt. Lett. 36(10), 1905 (2011).
[Crossref]

Chen, Y.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Chen, Z. Q.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Cheng, C.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Dong, C. H.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Dong, J. F.

Dötsch, H.

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

Ebbesen, T. W.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972 (2001).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Fan, S.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Fan, Y. X.

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Fehndrich, M.

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Guo, C. C.

Guo, G. C.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Hao, J. M.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Hessel, A.

Hong, W.

Hsieh, I. W.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Huang, L. R.

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Jian, J. W.

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

Jin, H.

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

Jing, L.

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kang, M.

Kenney, M.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Kong, X. K.

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Kotynski, R.

Lezec, H. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972 (2001).
[Crossref]

Li, G. X.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Li, M. H.

Li, Q.

Li, S.

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Li, Y. D.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Ling, Y. H.

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972 (2001).
[Crossref]

Liu, D. Y.

Liu, K.

Liu, S. B.

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Liu, T. J.

Liu, W. B.

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, L. Jing, W. B. Liu, and Z. Y. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref]

Lohmeyer, M.

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

Luan, J.

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Y. H. Ling, L. R. Huang, W. Hong, T. J. Liu, Y. L. Sun, J. Luan, and G. Yuan, “Asymmetric optical transmission based on unidirectional excitation of surface plasmon polaritons in gradient metasurface,” Opt. Express 25(12), 13648–13658 (2017).
[Crossref]

Luo, Z.

Lusakowski, J.

Lv, X. F.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Ma, T.

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Meng, L. J.

Min, L.

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Mizumoto, T.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Mo, J. J.

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Mühlenbernd, H.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Okyay, A. K.

E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
[Crossref]

Oliner, A. A.

Osgood, R. M.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Ozbay, E.

Pellerin, K. M.

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Popkov, A. F.

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Qi, J. W.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Qi, M. H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Qian, J.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Qiu, C. W.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Qiu, M.

L. J. Meng, D. Zhao, Z. C. Ruan, Q. Li, Y. Q. Yang, and M. Qiu, “Optimized grating as an ultra-narrow band absorber or plasmonic sensor,” Opt. Lett. 39(5), 1137–1140 (2014).
[Crossref]

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Ruan, Z. C.

Serebryannikov, A. E.

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Shen, Z.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Sheng, P.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Shoji, Y.

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Stolarek, M.

Stolen, R. H.

Sun, F. W.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Sun, Q.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Sun, Y. L.

Szoplik, T.

Thio, T.

Turner, E. H.

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Wang, H. T.

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Wang, Z. Y.

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Wen, W. J.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Xu, J.

Xu, J. J.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Xu, J. Y.

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

Xu, P. P.

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

Xu, P. W.

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Xu, W.

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

Yang, B.

Yang, Y. Q.

Yao, L. F.

Yavorskiy, D.

Ye, H. P.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Ye, W. M.

Yeo, S. P.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Yogurt, T. A.

E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
[Crossref]

Yokoi, H.

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Yuan, G.

Yuan, X. D.

Zapata Rodríguez, C. J.

Zentgraf, T.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhai, X. M.

Zhang, L.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Zhang, S.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zhang, X.

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

Zhang, Y. L.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Zhao, D.

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

Zheng, G. X.

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Zheng, Z.

Zhou, L.

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

Zhu, Z. H.

Zou, C. L.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Zou, X. B.

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Zouhdi, S.

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

S. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, “Experimental validation of strong directional selectivity in nonsymmetric metallic gratings with a subwavelength slit,” Appl. Phys. Lett. 98(5), 051103 (2011).
[Crossref]

A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, “Nonreciprocal TE-mode phase shift by domain walls in magnetooptic rib waveguides,” Appl. Phys. Lett. 72(20), 2508–2510 (1998).
[Crossref]

Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood, “Magneto-optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett. 92(7), 071117 (2008).
[Crossref]

Front. Optoelectron. (2)

X. K. Kong, J. Y. Xu, J. J. Mo, and S. B. Liu, “Broadband and conformal metamaterial absorber,” Front. Optoelectron. 10(2), 124–131 (2017).
[Crossref]

X. Zhang, J. W. Jian, H. Jin, and P. P. Xu, “Nested microring resonator with a doubled free spectral range for sensing application,” Front. Optoelectron. 10(2), 144–150 (2017).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon-polariton length scales: A route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Nanoscale (1)

L. Zhang, J. M. Hao, H. P. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale 5(8), 3373–3379 (2013).
[Crossref]

Nanoscale Res. Lett. (1)

P. W. Xu, X. F. Lv, J. Chen, Y. D. Li, J. Qian, Z. Q. Chen, J. W. Qi, Q. Sun, and J. J. Xu, “Dichroic Optical Diode Transmission in Two Dislocated Parallel Metallic Gratings,” Nanoscale Res. Lett. 13(1), 392 (2018).
[Crossref]

Nat. Commun. (1)

Z. Shen, Y. L. Zhang, Y. Chen, F. W. Sun, X. B. Zou, G. C. Guo, C. L. Zou, and C. H. Dong, “Reconfigurable optomechanical circulator and directional amplifier,” Nat. Commun. 9(1), 1–6 (2018).
[Crossref]

Nat. Nanotechnol. (1)

G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref]

Nat. Photonics (2)

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is-and what is not-an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

D. L. Sounas and A. Alù, “Non-reciprocal photonics based on time modulation,” Nat. Photonics 11(12), 774–783 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (7)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (3)

L. Zhou, W. J. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94(24), 243905 (2005).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,” Phys. Rev. Lett. 90(21), 213901 (2003).
[Crossref]

Plasmonics (1)

E. Battal, T. A. Yogurt, and A. K. Okyay, “Ultrahigh Contrast One-Way Optical Transmission Through a Subwavelength Slit,” Plasmonics 8(2), 509–513 (2013).
[Crossref]

Sci. Rep. (1)

J. Luan, L. R. Huang, Y. H. Ling, W. B. Liu, C. F. Ba, S. Li, and L. Min, “Dual-wavelength multifunctional metadevices based on modularization design by using indium-tin-oxide,” Sci. Rep. 9(1), 361 (2019).
[Crossref]

Sci. Technol. Adv. Mater. (1)

Y. Shoji and T. Mizumoto, “Magneto-optical non-reciprocal devices in silicon photonics,” Sci. Technol. Adv. Mater. 15(1), 014602 (2014).
[Crossref]

Science (2)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. H. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Schematic diagram of the AT device. The blue dotted line denotes one structural unit. (b) The unit cell includes two upper grating units (p = 2Δ1) and three lower grating units (p = 3Δ2). The upper and lower Ag gratings are separated by Ag film, and the lower grating is embedded in the SiO2 substrate.
Fig. 2.
Fig. 2. (a) Forward and backward transmittance spectra of the AT device. (b) Contrast ratio versus wavelength.
Fig. 3.
Fig. 3. Electric-field distribution for forward incidence at 610 nm: (a) Ez distribution along the x-z plane; (b) The zoomed map of (a); (c) Ex distribution along the x-z plane; (d) Ez distribution along the x-y plane, and the wavelength of the SPPs is found to be 590 nm. The dotted rectangle represents the location of the AT device.
Fig. 4.
Fig. 4. (a) Schematic diagram of the upper grating unit on a 130 nm-thick Ag film. (b) Corresponding reflectance (R), transmittance (T) and absorption (A) spectra. The inset is the Ez distribution in the x-z plane at peak wavelength 609.8 nm. The dotted rectangle represents the location of the AT device.
Fig. 5.
Fig. 5. Forward transmission spectra of direct decoupling and indirect decoupling of SPPs. The inset shows the indirectly decoupled AT device with a SiO2 spacer layer of thickness S.
Fig. 6.
Fig. 6. Ez electric-field distributions under forward incidence at transmittance peak-wavelengths: (a) at 610 nm for S = 0 nm; (b) at 610.6 nm for S = 10 nm; (c) at 612.3 nm for S = 40 nm; (d) at 611.5 nm for S = 60 nm. The dotted rectangle represents the location of the AT device.
Fig. 7.
Fig. 7. (a) Ez and (b) Ex distributions in the x-z plane for backward incident light at 610 nm. The dotted rectangle represents the location of the AT device.
Fig. 8.
Fig. 8. Backward transmittance spectra for the single-layer, two-layer, and our three-layer structures.
Fig. 9.
Fig. 9. Forward transmittance spectra for the AT device when the upper grating has different grating groove depths. The inset shows the corresponding structure.
Fig. 10.
Fig. 10. Forward and backward transmittance spectra of the AT device for d = 15, 20, 35 nm. ‘F’ and ‘B’ indicate that the incident directions of light are forward and backward, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε Ag = 4.0 54 λ 2 + i λ ( 0.38 + 0.71 λ 2 ) .
contrast ratio = | T f T b | T f + T b .
k S P P s = k 0 ε d ε m ε d + ε m ,
λ S P P s   =   2 π k S P P s .
β = 2 π λ 0 n sin θ + 2 π N Δ .
δ m = λ 0 2 π | ε m + ε d ε m 2 | 1 2 .

Metrics