Abstract

We report a structure to form a hybrid system in which a mesh is sandwiched between Au nanoparticles (AuNPs) and Ag nanoparticles (AgNPs). This self-assembly method uses smaller and denser AgNPs “hot spots” that are spin-coated on a AuNPs@GO mesh nanostructure formed by the reaction of GO@MoS2 and HAuCl4 to form AuNPs@GO mesh@AgNPs SERS substrates. Sub-40-nm mesh and 10-nm gaps ensure the landing sites and spacing of the AgNPs. Consequently, the design integrates the strong plasmonic effects of AgNPs and AuNPs with the biological compatibility of the GO mesh. Crystal violet (CV) as low as 10−15 M can be detected, which confirms the ultrahigh sensitivity of AuNPs@GO mesh@AgNPs. Furthermore, the reproducibility, stability, and finite-difference time-domain (FDTD) simulations confirm the value of this SERS substrate. This material can be used for label-free DNA detection, and the AuNPs@GO mesh@AgNPs substrate facilitated single-molecule DNA detection limits.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure

Jihua Xu, Chonghui Li, Haipeng Si, Xiaofei Zhao, Lin Wang, Shouzhen Jiang, Dongmei Wei, Jing Yu, Xianwu Xiu, and Chao Zhang
Opt. Express 26(17) 21546-21557 (2018)

Multifunctional paper strip based on GO-veiled Ag nanoparticles with highly SERS sensitive and deliverable properties for high-performance molecular detection

Cheng Yang, Yuanyuan Xu, Minghong Wang, Tianming Li, Yanyan Huo, Chuanxi Yang, and Baoyuan Man
Opt. Express 26(8) 10023-10037 (2018)

Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate

Xiaofei Zhao, Jing Yu, Zijing Zhang, Chonghui Li, Zhen Li, Shouzhen Jiang, Jie Pan, Aihua Liu, Chao Zhang, and Baoyuan Man
Opt. Express 26(18) 23831-23843 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
    [Crossref]
  2. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref]
  3. S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
    [Crossref]
  4. J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
    [Crossref]
  5. Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
    [Crossref]
  6. A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
    [Crossref]
  7. Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
    [Crossref]
  8. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
    [Crossref]
  9. L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
    [Crossref]
  10. X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
    [Crossref]
  11. P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
    [Crossref]
  12. A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
    [Crossref]
  13. S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
    [Crossref]
  14. V. Amendola, “Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal,” Beilstein J. Nanotechnol. 10, 1016–1023 (2019).
    [Crossref]
  15. W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
    [Crossref]
  16. T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
    [Crossref]
  17. W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
    [Crossref]
  18. Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
    [Crossref]
  19. S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
    [Crossref]
  20. J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
    [Crossref]
  21. D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
    [Crossref]
  22. Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
    [Crossref]
  23. H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
    [Crossref]
  24. Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
    [Crossref]
  25. W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
    [Crossref]
  26. X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
    [Crossref]
  27. Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
    [Crossref]
  28. J. Yu, Y. Wei, H. Wang, C. Zhang, Y. Wei, M. Wang, B. Man, and F. Lei, “In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology,” Opt. Express 27(7), 9879–9894 (2019).
    [Crossref]
  29. Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
    [Crossref]
  30. W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
    [Crossref]
  31. Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
    [Crossref]
  32. Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
    [Crossref]
  33. K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
    [Crossref]
  34. J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
    [Crossref]
  35. S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
    [Crossref]
  36. O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
    [Crossref]
  37. W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
    [Crossref]
  38. A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
    [Crossref]
  39. L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
    [Crossref]
  40. Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
    [Crossref]
  41. T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
    [Crossref]
  42. L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
    [Crossref]
  43. Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Adv. 4(79), 41734–41743 (2014).
    [Crossref]
  44. G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
    [Crossref]
  45. A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
    [Crossref]

2019 (6)

V. Amendola, “Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal,” Beilstein J. Nanotechnol. 10, 1016–1023 (2019).
[Crossref]

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

J. Yu, Y. Wei, H. Wang, C. Zhang, Y. Wei, M. Wang, B. Man, and F. Lei, “In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology,” Opt. Express 27(7), 9879–9894 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

2018 (8)

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref]

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

2017 (9)

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

2016 (6)

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

2015 (5)

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

2014 (5)

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Adv. 4(79), 41734–41743 (2014).
[Crossref]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

2013 (4)

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
[Crossref]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

2008 (1)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

1977 (1)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Ahmed, A.

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Alves, D.

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Amendola, V.

V. Amendola, “Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal,” Beilstein J. Nanotechnol. 10, 1016–1023 (2019).
[Crossref]

Bai, Y.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Bantz, K. C.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Bhattacharya, T. S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Caires, A.

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Carron, K. T.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Chang, C.-C.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Chang, L.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Chen, G.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Chen, J.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

Chen, S.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Chen, Y.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

Cheng, Z.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Chiang, N.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Choueiri, R. M.

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Choy, W. C.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Cong, S.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

Cui, Y.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

Das, K.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Das, L.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Dou, S.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Dou, Y.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Du, H.-F.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Du, S.

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Du, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Dwivedi, P. K.

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

Fan, C.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Fan, Q.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Fan, W.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Fantini, C.

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Feng, J.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Ferlauto, A.

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Fu, W. L.

W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
[Crossref]

Gao, C.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

Gao, X.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

Geng, F.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Gong, W.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Greeneltch, N.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Guest, J. R.

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Guo, L.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Guo, Y.

Guselnikova, O.

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Halas, N. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Han, L.

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

Han, Y.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Haynes, C. L.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

He, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Hu, X.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

Huang, C. Z.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
[Crossref]

Huang, Q.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

Huo, Y.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Hwang, B.-J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Im, H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Jiang, J.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Jiang, S.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Johnson, T. W.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Klinkova, A.

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Kuang, H.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Kulkarni, M. M.

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

Kumacheva, E.

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Kurouski, D.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Ladeira, L.

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

Large, N.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Lee, S. H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Lee, Y. H.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Lei, F.

Li, C.

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Li, D.-W.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Li, G.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Li, H.-T.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Li, J.-J.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Li, Q.

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Li, R.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Li, S.

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

Li, X.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Li, Y. F.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

Li, Z.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

Liang, O.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Lin, J.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Lin, K.-Y.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Ling, X.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

Ling, X. Y.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Liu, A.

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Liu, C.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

Liu, H.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Liu, J.-Y.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Liu, K.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

Liu, L.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Liu, M.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Liu, M.-K.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Liu, T.

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Liu, Y.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

Liu, Y.-Y.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Liu, Z.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Lu, H.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Lu, W.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Lu, Y.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

Lyutakov, O.

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Ma, C.

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

Ma, W.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Maier, S. A.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Man, B.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

J. Yu, Y. Wei, H. Wang, C. Zhang, Y. Wei, M. Wang, B. Man, and F. Lei, “In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology,” Opt. Express 27(7), 9879–9894 (2019).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Man, P.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Mathur, S.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

McClain, M. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Meng, G.

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

Meng, Y.

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Adv. 4(79), 41734–41743 (2014).
[Crossref]

Mondal, S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Naqvi, T. K.

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

Neumann, O.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Nie, Y.

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Ning, T.

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

Nörbel, L.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Nordlander, P.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Oh, S. H.

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

Pan, C.-J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Pan, J.

Pan, X.

Pedireddy, S.

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Peng, T.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Pershina, A.

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Postnikov, P.

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Qi, J.

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Qin, H.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Qu, A.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Qu, L. L.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Qu, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Quyen, T. T. B.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Ren, X.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Rick, J.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Satpati, B.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Schatz, G. C.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Schroeder, T.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Seideman, T.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Sen, K.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Shang, Y.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Shen, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Shen, L.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Shi, G.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Shi, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Shi, Y.

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Siddiqui, A. M.

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

Singha, A.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Singha, S. S.

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Srivastava, A. K.

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

Su, J.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Su, W.-N.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Sun, K.

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

Sun, Q.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Sun, Y.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

Svorcik, V.

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Tao, Q.

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

Tian, S.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Uen, Y.-H.

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

Van Duyne, R. P.

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

Vaz, R.

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

Wang, D.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Wang, F.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Wang, H.

Wang, K.

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Wang, M.

J. Yu, Y. Wei, H. Wang, C. Zhang, Y. Wei, M. Wang, B. Man, and F. Lei, “In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology,” Opt. Express 27(7), 9879–9894 (2019).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Wang, P.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Wang, Q.

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Wang, X.

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

Wang, Y.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Wang, Z.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

Wei, X.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Wei, Y.

Weng, G.-J.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Wu, L.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

Wu, T.

Wu, X.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Wu, Y.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

Xiao, J.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

Xie, Y.

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Adv. 4(79), 41734–41743 (2014).
[Crossref]

Xie, Y. H.

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Xiu, X.

Xu, C.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Xu, L.

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

Xu, S.

Xu, W.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

Xu, Y.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Xuan, J.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Yan, W.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

Yang, C.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Y. Xu, C. Yang, M. Wang, X. Pan, C. Zhang, M. Liu, S. Xu, S. Jiang, and B. Man, “Adsorbable and self-supported 3D AgNPs/G@ Ni foam as cut-and-paste highly-sensitive SERS substrates for rapid in situ detection of residuum,” Opt. Express 25(14), 16437–16451 (2017).
[Crossref]

Yang, D.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

Yang, G.-H.

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Yang, L.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

Yang, X.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Yin, Y.

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

Yu, J.

Zhang, C.

Zhang, D.

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Zhang, H.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

Zhang, J.

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

Zhang, L.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

Zhang, Q.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Zhang, Q.-Y.

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

Zhang, S.

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

Zhang, W.

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Zhao, J.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Zhao, J.-W.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Zhao, Y.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Zhao, Z.

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Zhen, S. J.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
[Crossref]

Zheng, H.

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

Zheng, Z.

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Zhou, D.

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

Zhou, L.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Zhu, D.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

Zhu, J.

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Zhu, Y.

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Zong, S.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

K. Sun, Q. Huang, G. Meng, and Y. Lu, “Highly sensitive and selective surface-enhanced Raman spectroscopy label-free detection of 3, 3′, 4, 4′-tetrachlorobiphenyl using DNA aptamer-modified Ag-nanorod arrays,” ACS Appl. Mater. Interfaces 8(8), 5723–5728 (2016).
[Crossref]

L. L. Qu, Y.-Y. Liu, M.-K. Liu, G.-H. Yang, D.-W. Li, and H.-T. Li, “Highly reproducible Ag NPs/CNT-intercalated GO membranes for enrichment and SERS detection of antibiotics,” ACS Appl. Mater. Interfaces 8(41), 28180–28186 (2016).
[Crossref]

Adv. Funct. Mater. (2)

X. Li, W. C. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Q. Fan, K. Liu, J. Feng, F. Wang, Z. Liu, M. Liu, Y. Yin, and C. Gao, “Building High-Density Au–Ag Islands on Au Nanocrystals by Partial Surface Passivation,” Adv. Funct. Mater. 28(41), 1803199 (2018).
[Crossref]

Adv. Mater. (5)

W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, “Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy,” Adv. Mater. 25(6), 928–933 (2013).
[Crossref]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref]

J. Lin, Y. Shang, X. Li, J. Yu, X. Wang, and L. Guo, “Ultrasensitive SERS detection by defect engineering on single Cu2O superstructure particle,” Adv. Mater. 29(5), 1604797 (2017).
[Crossref]

H. Im, K. C. Bantz, S. H. Lee, T. W. Johnson, C. L. Haynes, and S. H. Oh, “Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing,” Adv. Mater. 25(19), 2678–2685 (2013).
[Crossref]

P. Wang, O. Liang, W. Zhang, T. Schroeder, and Y. H. Xie, “Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection,” Adv. Mater. 25(35), 4918–4924 (2013).
[Crossref]

Anal. Chem. (1)

J. Su, D. Wang, L. Nörbel, J. Shen, Z. Zhao, Y. Dou, T. Peng, J. Shi, S. Mathur, and C. Fan, “Multicolor gold–silver nano-mushrooms as ready-to-use SERS probes for ultrasensitive and multiplex DNA/miRNA detection,” Anal. Chem. 89(4), 2531–2538 (2017).
[Crossref]

Analyst (2)

D. Kurouski, N. Large, N. Chiang, N. Greeneltch, K. T. Carron, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Unraveling near-field and far-field relationships for 3D SERS substrates–a combined experimental and theoretical analysis,” Analyst 141(5), 1779–1788 (2016).
[Crossref]

W. L. Fu, S. J. Zhen, and C. Z. Huang, “One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection,” Analyst 138(10), 3075–3081 (2013).
[Crossref]

Appl. Surf. Sci. (2)

T. K. Naqvi, A. K. Srivastava, M. M. Kulkarni, A. M. Siddiqui, and P. K. Dwivedi, “Silver nanoparticles decorated reduced graphene oxide (rGO) SERS sensor for multiple analytes,” Appl. Surf. Sci. 478, 887–895 (2019).
[Crossref]

O. Guselnikova, P. Postnikov, A. Pershina, V. Svorcik, and O. Lyutakov, “Express and portable label-free DNA detection and recognition with SERS platform based on functional Au grating,” Appl. Surf. Sci. 470, 219–227 (2019).
[Crossref]

Beilstein J. Nanotechnol. (1)

V. Amendola, “Correlation of surface-enhanced Raman scattering (SERS) with the surface density of gold nanoparticles: evaluation of the critical number of SERS tags for a detectable signal,” Beilstein J. Nanotechnol. 10, 1016–1023 (2019).
[Crossref]

Biosens. Bioelectron. (2)

Q. Wang, Q. Li, X. Yang, K. Wang, S. Du, H. Zhang, and Y. Nie, “Graphene oxide–gold nanoparticles hybrids-based surface plasmon resonance for sensitive detection of microRNA,” Biosens. Bioelectron. 77, 1001–1007 (2016).
[Crossref]

S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, “Au nanoparticles functionalized 3D-MoS2 nanoflower: An efficient SERS matrix for biomolecule sensing,” Biosens. Bioelectron. 119, 10–17 (2018).
[Crossref]

Carbon (2)

S. Chen, X. Li, Y. Zhao, L. Chang, and J. Qi, “Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering,” Carbon 81, 767–772 (2015).
[Crossref]

W. Zhang, P. Man, M. Wang, Y. Shi, Y. Xu, Z. Li, C. Yang, and B. Man, “Roles of graphene nanogap for the AgNFs electrodeposition on the woven Cu net as flexible substrate and its application in SERS,” Carbon 133, 300–305 (2018).
[Crossref]

Chem. Rev. (1)

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[Crossref]

Dalton Trans. (1)

Q. Tao, S. Li, C. Ma, K. Liu, and Q.-Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99(15), 5215–5217 (1977).
[Crossref]

J. Colloid Interface Sci. (1)

A. Caires, R. Vaz, C. Fantini, and L. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes–gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref]

J. Mater. Chem. B (1)

T. T. B. Quyen, C.-C. Chang, W.-N. Su, Y.-H. Uen, C.-J. Pan, J.-Y. Liu, J. Rick, K.-Y. Lin, and B.-J. Hwang, “Self-focusing Au@ SiO 2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B 2(6), 629–636 (2014).
[Crossref]

J. Mater. Chem. C (1)

J. Zhu, H.-F. Du, Q. Zhang, J. Zhao, G.-J. Weng, J.-J. Li, and J.-W. Zhao, “SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating,” J. Mater. Chem. C 7(11), 3322–3334 (2019).
[Crossref]

Nano Lett. (3)

L. Zhang, T. Liu, K. Liu, L. Han, Y. Yin, and C. Gao, “Gold nanoframes by nonepitaxial growth of Au on AgI nanocrystals for surface-enhanced Raman spectroscopy,” Nano Lett. 15(7), 4448–4454 (2015).
[Crossref]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: A sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref]

Nanoscale (8)

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light–matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref]

Z. Li, S. Jiang, Y. Huo, T. Ning, A. Liu, C. Zhang, Y. He, M. Wang, C. Li, and B. Man, “3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis,” Nanoscale 10(13), 5897–5905 (2018).
[Crossref]

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref]

Y. Zhao, D. Yang, X. Li, Y. Liu, X. Hu, D. Zhou, and Y. Lu, “Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles,” Nanoscale 9(3), 1087–1096 (2017).
[Crossref]

S. Zhang, Q. Huang, L. Zhang, H. Zhang, Y. Han, Q. Sun, Z. Cheng, H. Qin, S. Dou, and Z. Li, “Vacancy engineering of Cu 2− x Se nanoparticles with tunable LSPR and magnetism for dual-modal imaging guided photothermal therapy of cancer,” Nanoscale 10(7), 3130–3143 (2018).
[Crossref]

X. Wei, Q. Fan, H. Liu, Y. Bai, L. Zhang, H. Zheng, Y. Yin, and C. Gao, “Holey Au–Ag alloy nanoplates with built-in hotspots for surface-enhanced Raman scattering,” Nanoscale 8(34), 15689–15695 (2016).
[Crossref]

A. Qu, X. Wu, L. Xu, L. Liu, W. Ma, H. Kuang, and C. Xu, “SERS-and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers,” Nanoscale 9(11), 3865–3872 (2017).
[Crossref]

W. Fan, Y. H. Lee, S. Pedireddy, Q. Zhang, T. Liu, and X. Y. Ling, “Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing,” Nanoscale 6(9), 4843–4851 (2014).
[Crossref]

Nat. Commun. (1)

Z. Zheng, S. Cong, W. Gong, J. Xuan, G. Li, W. Lu, F. Geng, and Z. Zhao, “Semiconductor SERS enhancement enabled by oxygen incorporation,” Nat. Commun. 8(1), 1993 (2017).
[Crossref]

Opt. Commun. (1)

G. Shi, M. Wang, Y. Zhu, L. Shen, Y. Wang, W. Ma, Y. Chen, and R. Li, “A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array,” Opt. Commun. 412, 28–36 (2018).
[Crossref]

Opt. Express (3)

RSC Adv. (3)

A. Caires, D. Alves, C. Fantini, A. Ferlauto, and L. Ladeira, “One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy,” RSC Adv. 5(58), 46552–46557 (2015).
[Crossref]

A. Klinkova, A. Ahmed, R. M. Choueiri, J. R. Guest, and E. Kumacheva, “Toward rational design of palladium nanoparticles with plasmonically enhanced catalytic performance,” RSC Adv. 6(53), 47907–47911 (2016).
[Crossref]

Y. Xie and Y. Meng, “SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array,” RSC Adv. 4(79), 41734–41743 (2014).
[Crossref]

Sens. Actuators, B (1)

H. Zhang, W. Zhang, X. Gao, P. Man, Y. Sun, C. Liu, Z. Li, Y. Xu, B. Man, and C. Yang, “Formation of the AuNPs/GO@ MoS2/AuNPs nanostructures for the SERS application,” Sens. Actuators, B 282, 809–817 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Preparation steps of AuNPs@GOmesh@AgNPs and principle of analyte detection.
Fig. 2.
Fig. 2. (a) and (b) are SEM images of the AuNPs@GO mesh; (c) SEM image of AuNPs@GO mesh@AgNPs; (d) schematic diagram of AuNPs@GO mesh@AgNPs structure; (e) Raman intensity of CV (10−7 M) detected with different substrates; and (f) Raman intensity of CV on three different substrates.
Fig. 3.
Fig. 3. (a2) Raman spectra of CV (10−7 M) on AuNPs@GO mesh@AgNPs with different reaction times of GO@MoS2 and HAuC14; (a1) and (a3) SEM image of AuNPs@GO mesh@AgNPs with 9 min and 1 min of reaction time; (b2) Raman spectra of CV (10−7 M) on AuNPs@GO mesh@AgNPs with different concentrations of AgNPs in the spin-coated process; (b1) and (b3) different morphologies of AuNPs@GO mesh@AgNPs.
Fig. 4.
Fig. 4. (a) and (b) electric field distributions of AuNPs@GO mesh@AgNPs with different heights.
Fig. 5.
Fig. 5. (a) The detection limit and Raman spectra of CV from 10−10 to 10−15 M on the AuNPs@GO mesh@AgNPs substrate; (b) linear fitting for the intensity changes of peak 910 cm−1 and 1173 cm−1; (c) The 30 different points of CV on AuNPs@GO mesh@AgNPs substrate and RSD of the peak at 910 cm−1; (d) Raman mapping of this substrate; (e) SERS spectra of CV detected by AuNPs@GO mesh@AgNPs for 30 days.
Fig. 6.
Fig. 6. (a) The Raman spectrum of DNA with different base (adenine, thymine, cytosine); (b) Raman spectral changes after addition of complementary and non-complementary DNA.
Fig. 7.
Fig. 7. (a) The Raman peaks of adenine, cytosine, a mixed case with adenine and cytosine, and negative control. (b) Histogram of the event distribution.
Fig. 8.
Fig. 8. UV-VIS absorption spectrum in different kinds of substrates.
Fig. 9.
Fig. 9. Raman spectra of 10 different positions of 10 samples.
Fig. 10.
Fig. 10. EDS measures of AuNPs@GO mesh@AgNPs.

Tables (1)

Tables Icon

Table 1. Detection limits and enhancement factors of relevant substrate

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D t = × H
D ( ω ) = ε 0 ε r E ( ω )
H t = 1 μ 0 × E
E z y E y z = μ 0 H x t
E x z E z x = μ 0 H y t
E y x E x y = μ 0 H z t
H z y H y z = ε E x t
H x z H z x = ε E y t
H y x H x y = ε E z t
f ( x , y , z , t ) x | x = i Δ x f n ( i + 0.5 , j , k ) f n ( i 0.5 , j , k ) Δ x
f ( x , y , z , t ) y | y = j Δ y f n ( i , j + 0.5 , k ) f n ( i , j 0.5 , k ) Δ y
f ( x , y , z , t ) z | z = k Δ z f n ( i , j , k + 0.5 ) f n ( i , j , k 0.5 ) Δ z
f ( x , y , z , t ) t | t = n Δ t f n + 0.5 ( i , j , k ) f n 0.5 ( i , j , k ) Δ t

Metrics