Abstract

Inertial confinement fusion facilities generate implosions at speeds greater than 100 km/s, and measuring the material velocities is important and challenging. We have developed a new velocimetry technique that uses time-stretched spectral interferometry to increase the measurable velocity range normally limited by the detector bandwidth. In this approach, the signal is encoded on a chirped laser pulse that is stretched in time to reduce the beat frequency before detection. We demonstrate the technique on an imploding liner experiment at the Sandia National Laboratories’ Z machine, where beat frequencies in excess of 50 GHz were measured with 20 GHz bandwidth detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Measurement capabilities of planar Doppler velocimetry using pulsed lasers

Robert L. McKenzie
Appl. Opt. 35(6) 948-964 (1996)

Frequency division multiplexing for interferometric planar Doppler velocimetry

Thomas O. H. Charrett, Ian A. Bledowski, Stephen W. James, and Ralph P. Tatam
Appl. Opt. 53(20) 4363-4374 (2014)

Simulating translation-induced laser speckle dynamics in photon Doppler velocimetry

Will J. Warren, Erik A. Moro, Matthew E. Briggs, and Eric B. Flynn
Appl. Opt. 53(21) 4661-4668 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-linear Wave Motion (Springer, 1999).
  2. R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31(7), 1253–1269 (1960).
    [Crossref]
  3. L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
    [Crossref]
  4. W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
    [Crossref]
  5. C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
    [Crossref]
  6. D. R. Goosman, “Formulas for Fabry–Perot velocimeter performance using both stripe and multifrequency techniques,” Appl. Opt. 30(27), 3907–3923 (1991).
    [Crossref]
  7. O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
    [Crossref]
  8. D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
    [Crossref]
  9. P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
    [Crossref]
  10. O. L. Landen et al., “The first target experiments on the National Ignition Facility,” Eur. Phys. J. D 44(2), 273–281 (2007).
    [Crossref]
  11. D. K. Frayer and D. Fratanduono, “Considerations for a PDV diagnostic capability on the National Ignition Facility,” Proc. SPIE 9966, 99660D (2016).
    [Crossref]
  12. A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
    [Crossref]
  13. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  14. T. Godin et al., “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
    [Crossref]
  15. H. Xia and C. Zhang, “Ultrafast ranging lidar based on real-time Fourier transformation,” Opt. Lett. 34(14), 2108–2110 (2009).
    [Crossref]
  16. H. Xia and C. Zhang, “Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry,” Opt. Express 18(5), 4118–4129 (2010).
    [Crossref]
  17. B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
    [Crossref]
  18. J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
    [Crossref]
  19. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [Crossref]
  20. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]
  21. T. Werblinski, S. R. Engel, R. Engelbrecht, L. Zigan, and S. Will, “Temperature and multi-species measurements by supercontinuum absorption spectroscopy for IC engine applications,” Opt. Express 21(11), 13656–13667 (2013).
    [Crossref]
  22. F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher,” Opt. Express 24(19), 21264–21275 (2016).
    [Crossref]
  23. J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
    [Crossref]
  24. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref]
  25. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
    [Crossref]
  26. P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
    [Crossref]
  27. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
    [Crossref]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  29. Y. Han and B. Jalali, “Photonic Time-Stretched Analog-to-Digital Converter: Fundamental Concepts and Practical Considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
    [Crossref]
  30. P. F. Knapp et al., “Direct measurement of the inertial confinement time in a magnetically driven implosion,” Phys. Plasmas 24(4), 042708 (2017).
    [Crossref]
  31. G. F. Swadling et al., “Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments,” Phys. Plasmas 24(3), 032705 (2017).
    [Crossref]

2019 (1)

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

2018 (1)

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

2017 (3)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

P. F. Knapp et al., “Direct measurement of the inertial confinement time in a magnetically driven implosion,” Phys. Plasmas 24(4), 042708 (2017).
[Crossref]

G. F. Swadling et al., “Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments,” Phys. Plasmas 24(3), 032705 (2017).
[Crossref]

2016 (3)

F. Saltarelli, V. Kumar, D. Viola, F. Crisafi, F. Preda, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher,” Opt. Express 24(19), 21264–21275 (2016).
[Crossref]

D. K. Frayer and D. Fratanduono, “Considerations for a PDV diagnostic capability on the National Ignition Facility,” Proc. SPIE 9966, 99660D (2016).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

2015 (1)

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

2013 (3)

2011 (1)

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

2010 (1)

2009 (1)

2008 (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

2007 (3)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

O. L. Landen et al., “The first target experiments on the National Ignition Facility,” Eur. Phys. J. D 44(2), 273–281 (2007).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

2006 (1)

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

2004 (2)

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

2003 (1)

1998 (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

1991 (1)

1988 (1)

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

1979 (1)

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[Crossref]

1972 (1)

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

1960 (1)

R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31(7), 1253–1269 (1960).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Armstrong, W. J.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Ayazi, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Barker, L. M.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

Barland, S.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Bhushan, A. S.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Blue, B. E.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Boehly, T. R.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Bradley, D. K.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Broderick, N.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Celliers, P. M.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Cerullo, G.

Chau, H. H.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Chen, G.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Churkin, D. V.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Collins, G. W.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Coppinger, F.

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Courant, R.

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-linear Wave Motion (Springer, 1999).

Crisafi, F.

Dalton, D. G.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Deng, X.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Dolan, D. H.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Engel, S. R.

Engelbrecht, R.

Fard, A.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Fratanduono, D.

D. K. Frayer and D. Fratanduono, “Considerations for a PDV diagnostic capability on the National Ignition Facility,” Proc. SPIE 9966, 99660D (2016).
[Crossref]

Frayer, D. K.

D. K. Frayer and D. Fratanduono, “Considerations for a PDV diagnostic capability on the National Ignition Facility,” Proc. SPIE 9966, 99660D (2016).
[Crossref]

Friedrichs, K. O.

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-linear Wave Motion (Springer, 1999).

Goda, K.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Godin, T.

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

T. Godin et al., “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21(15), 18452–18460 (2013).
[Crossref]

Goosman, D. R.

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

D. R. Goosman, “Formulas for Fabry–Perot velocimeter performance using both stripe and multifrequency techniques,” Appl. Opt. 30(27), 3907–3923 (1991).
[Crossref]

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Y. Han and B. Jalali, “Photonic Time-Stretched Analog-to-Digital Converter: Fundamental Concepts and Practical Considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

Hanzard, P.-H.

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Harding, E.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Hemsing, W. F.

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[Crossref]

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Hicks, D. G.

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Hideur, A.

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Hollenbach, R. E.

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

Huen, T.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Idlahcen, S.

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Jalali, B.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

Y. Han and B. Jalali, “Photonic Time-Stretched Analog-to-Digital Converter: Fundamental Concepts and Practical Considerations,” J. Lightwave Technol. 21(12), 3085–3103 (2003).
[Crossref]

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Kim, S. H.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Knapp, P. F.

P. F. Knapp et al., “Direct measurement of the inertial confinement time in a magnetically driven implosion,” Phys. Plasmas 24(4), 042708 (2017).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Kumar, V.

La Lone, B. M.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Landen, O. L.

O. L. Landen et al., “The first target experiments on the National Ignition Facility,” Eur. Phys. J. D 44(2), 273–281 (2007).
[Crossref]

Lemke, R. W.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Li, J.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Liu, S.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Mahjoubfar, A.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

Marsh, S. P.

R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31(7), 1253–1269 (1960).
[Crossref]

Marshall, B. R.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Martin, M. R.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Martinez, C.

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

McBride, R. D.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

McMillan, C. F.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

McQueen, R. G.

R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31(7), 1253–1269 (1960).
[Crossref]

Miller, E. K.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Parker, N. L.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Peng, Q.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Perry, S. J.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Polli, D.

Preda, F.

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Roze, C.

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Saltarelli, F.

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

Solli, D. R.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Steinmetz, L. L.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Stevens, G. D.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Strand, O. T.

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Swadling, G. F.

G. F. Swadling et al., “Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments,” Phys. Plasmas 24(3), 032705 (2017).
[Crossref]

Tao, S.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Turitsyn, S. K.

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

Turley, W. D.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Veeser, L. R.

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

Viola, D.

Walker, S. S.

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

Wang, J.

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

Werblinski, T.

Whipkey, R. K.

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

Whitworth, T. L.

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

Will, S.

Xia, H.

Zhang, C.

Zigan, L.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[Crossref]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98(10), 101107 (2011).
[Crossref]

P.-H. Hanzard, T. Godin, S. Idlahcen, C. Roze, and A. Hideur, “Real-time tracking of single shockwaves via amplified time-stretch imaging,” Appl. Phys. Lett. 112(16), 161106 (2018).
[Crossref]

Electron. Lett. (1)

A. S. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched digital-to-analogue conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Eur. Phys. J. D (1)

O. L. Landen et al., “The first target experiments on the National Ignition Facility,” Eur. Phys. J. D 44(2), 273–281 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Chou, Y. Han, and B. Jalali, “Time-wavelength spectroscopy for chemical sensing,” IEEE Photonics Technol. Lett. 16(4), 1140–1142 (2004).
[Crossref]

J. Appl. Phys. (2)

R. G. McQueen and S. P. Marsh, “Equation of state for nineteen metallic elements from shock-wave measurements to two megabars,” J. Appl. Phys. 31(7), 1253–1269 (1960).
[Crossref]

L. M. Barker and R. E. Hollenbach, “Laser interferometer for measuring high velocities of any reflecting surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (3)

A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, and B. Jalali, “Time stretch and its applications,” Nat. Photonics 11(6), 341–351 (2017).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Plasmas (2)

P. F. Knapp et al., “Direct measurement of the inertial confinement time in a magnetically driven implosion,” Phys. Plasmas 24(4), 042708 (2017).
[Crossref]

G. F. Swadling et al., “Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments,” Phys. Plasmas 24(3), 032705 (2017).
[Crossref]

Proc. SPIE (1)

D. K. Frayer and D. Fratanduono, “Considerations for a PDV diagnostic capability on the National Ignition Facility,” Proc. SPIE 9966, 99660D (2016).
[Crossref]

Rev. Sci. Instrum. (7)

B. M. La Lone, B. R. Marshall, E. K. Miller, G. D. Stevens, W. D. Turley, and L. R. Veeser, “Simultaneous broadband laser ranging and photonic Doppler velocimetry for dynamic compression experiments,” Rev. Sci. Instrum. 86(2), 023112 (2015).
[Crossref]

J. Wang, S. Liu, J. Li, S. Tao, G. Chen, X. Deng, and Q. Peng, “Multi-reference broadband laser ranging to increase the measuring range,” Rev. Sci. Instrum. 90(3), 033108 (2019).
[Crossref]

W. F. Hemsing, “Velocity sensing interferometer (VISAR) modification,” Rev. Sci. Instrum. 50(1), 73–78 (1979).
[Crossref]

C. F. McMillan, D. R. Goosman, N. L. Parker, L. L. Steinmetz, H. H. Chau, T. Huen, R. K. Whipkey, and S. J. Perry, “Velocimetry of fast surfaces using Fabry–Perot interferometry,” Rev. Sci. Instrum. 59(1), 1–21 (1988).
[Crossref]

O. T. Strand, D. R. Goosman, C. Martinez, and T. L. Whitworth, “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instrum. 77(8), 083108 (2006).
[Crossref]

D. H. Dolan, R. W. Lemke, R. D. McBride, M. R. Martin, E. Harding, D. G. Dalton, B. E. Blue, and S. S. Walker, “Tracking an imploding cylinder with photonic Doppler velocimetry,” Rev. Sci. Instrum. 84(5), 055102 (2013).
[Crossref]

P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instrum. 75(11), 4916–4929 (2004).
[Crossref]

Other (2)

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves: A Manual on the Mathematical Theory of Non-linear Wave Motion (Springer, 1999).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Simplified schematic of TSPDV system. 1500, 1445, 1485, 1465: Raman pump lasers; PBC: polarization based combiner; 50/50 and 90/10: fiber-optic couplers; LASER: Menlo 100 fs pulsed laser; MZI: Mach-Zehnder interferometer; PSC: pump-signal combiner; EDFA: optical amplifier; 3PC: three-port fiber-optic circulator; PDV: velocimetry laser for PDV comparison; A/D: single-channel, optical add/drop filter; M1 and M2: mirrors; FS1 and FS2: dispersive fiber optic spools; OS: optical switch; PR: photoreceiver; REGEN: regenerative optical amplifier.
Fig. 2.
Fig. 2. (a) PDV and 2(b) TSPDV spectrograms for the same experiment. The TSPDV pulse is stretched in time to create a lower beat frequency and longer recording time. Scales to the right indicate relative strengths of Fourier components in spectrograms (increasing in strength from blue toward red). Red curves below the spectrograms show raw beat frequency data, which shows the amplitude but is too fast to read on this timescale.
Fig. 3.
Fig. 3. Velocity curves determined from the PDV and TSPDV spectrograms of Figs. 2(a) and 2(b). The curves agree to within 1%.
Fig. 4.
Fig. 4. Schematic of the experiment on the Z machine. L: imploding aluminum liner, V: vacuum, Q: quartz tube, M: mirror (reflecting prism) for PDV light, Xe: liquid xenon, PDV: velocimetry beams for PDV and TSPDV. Although the PDV light is shown reflecting from the liner, there are also partial reflections from the other places where the index of refraction changes, most notably at the edges of the quartz tube and (after the shock forms in the quartz and later in the xenon) from the shock front.
Fig. 5.
Fig. 5. Spectrograms of (a) normal PDV and (b) TSPDV experiment on the SNL Z machine. Purple areas at the tops of the spectrograms indicate frequencies too high for the systems to record. Capital letters indicate interference origins of the signals. The liner moves through vacuum toward the fused silica tube window, and its movement is tracked from rest in the PDV spectrogram, (a), and from about 550 ns in the TSPDV record, (b). Traces A and D are from reflections off of the tube mixed with the LO and reference beams in the TSPDV and PDV, respectively. B is a mix between a tube reflection and the moving liner. Traces E and C are the Doppler-shifted reflections mixed with the LO and reference, respectively.
Fig. 6.
Fig. 6. Velocities in imploding liner experiment (Z3138) measured with normal PDV (red x) and TSPDV (black dot). These were extracted from traces C and E in the spectrograms in Figs. 5(a) and 5(b). To show the continuity in the measurements, the TSPDV velocities in the quartz have been multiplied by the quartz refractive index.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

φ = β 0 L + β 1 L ( ω ω 0 ) + 1 2 β 2 L ( ω ω 0 ) 2 + 1 6 β 3 L ( ω ω 0 ) 3 .
t ^ = φ ω = β 1 L + β 2 L ( ω ω 0 ) + 1 2 β 3 L ( ω ω 0 ) 2 ,
ω = ω 0 + 1 β 2 L ( t ^ β 1 L ) + 1 2 β 3 L ( β 2 L ) 3 ( t ^ β 1 L ) 2 .
t ^ s i g = β 1 L + β 2 L 1 ( ω s i g ω 0 ) + β 2 L 2 ( ω D ω 0 ) + 1 2 β 3 L 1 ( ω s i g ω 0 ) 2 + 1 2 β 3 L 2 ( ω D ω 0 ) 2 ,
t ^ s i g = β 1 L + β 2 L 1 ( ω D ( 1 2 υ / c ) ω 0 ) + β 2 L 2 ( ω D ω 0 ) + 1 2 β 3 L 1 ( ω D ( 1 2 υ / c ) ω 0 ) 2 + 1 2 β 3 L 2 ( ω D ω 0 ) 2 .
t ^ r e f = β 1 L + β 2 L ( ω r e f ω 0 ) + 1 2 β 3 L ( ω r e f ω 0 ) 2 .
ω r e f = ω D ( 1 L 1 L 2 υ c ) .
Ω = ( ω D ω r e f ) = ω D L 1 L 2 υ c = L 1 L 2 υ λ ,
Δ Ω d = 2 Δ d c β 2 L ,

Metrics