Abstract

Semiconductor ion sensors that respond to the surface electric charge in a solution are used for chemical and biological sensing. Photonic sensors exploiting such a response in the photoluminescence intensity enable a simple system consisting only of a photopump source and a photodiode; however, their sensitivity is usually lower than that of electric sensors, such as ion-sensitive field-effect transistors. This study employed a GaInAsP semiconductor honeycomb photonic crystal slab as a photonic sensor structure and obtained a high ion sensitivity. The surface recombination, which is the origin of the ion sensitivity, was enhanced by increasing the surface-to-volume ratio and moderately suppressing the photopump level. Nevertheless, a sufficient signal-to-noise ratio was maintained by improving the light extraction efficiency. Moreover, a high pH sensitivity of 0.27 dB/pH, which is six times that without photonic crystals, was obtained and resulted in a pH resolution of 0.011 at pH ∼7 comparable with that of electric sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ion-sensitive photonic-crystal nanolaser sensors

Takumi Watanabe, Yoshito Saijo, Yu Hasegawa, Keisuke Watanabe, Yoshiaki Nishijima, and Toshihiko Baba
Opt. Express 25(20) 24469-24479 (2017)

Cell imaging using GaInAsP semiconductor photoluminescence

Mai Sakemoto, Yoji Kishi, Keisuke Watanabe, Hiroshi Abe, Satoshi Ota, Yasushi Takemura, and Toshihiko Baba
Opt. Express 24(10) 11232-11238 (2016)

Sandwich-structure-modulated photoluminescence enhancement of wide bandgap semiconductors capping with dielectric microsphere arrays

Lixue Yang, Yinzhou Yan, Qiang Wang, Yong Zeng, Feifei Liu, Lin Li, Yan Zhao, and Yijian Jiang
Opt. Express 25(6) 6000-6014 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
    [Crossref]
  2. A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
    [Crossref]
  3. M. Kaisti, “Detection principles of biological and chemical FET sensors,” Biosens. Bioelectron. 98, 437–448 (2017).
    [Crossref]
  4. P. Bergveld, “Thirty years of ISFETOLOGY,” Sens. Actuators, B 88(1), 1–20 (2003).
    [Crossref]
  5. H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
    [Crossref]
  6. T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
    [Crossref]
  7. M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
    [Crossref]
  8. K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
    [Crossref]
  9. H. Van Ryswyk and A. B. Ellis, “Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry,” J. Am. Chem. Soc. 108(9), 2454–2455 (1986).
    [Crossref]
  10. G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
    [Crossref]
  11. K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
    [Crossref]
  12. T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
    [Crossref]
  13. F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
    [Crossref]
  14. H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
    [Crossref]
  15. V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
    [Crossref]
  16. J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
    [Crossref]
  17. L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
    [Crossref]
  18. S. Hariharan and B. Karthikeyan, “Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles,” J. Lumin. 183, 1–6 (2017).
    [Crossref]
  19. K. Mettler, “Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide,” Appl. Phys. 12(1), 75–82 (1977).
    [Crossref]
  20. G. Chmiel and H. Gerischer, “Photoluminescence at a semiconductor-electrolyte contact around and beyond the flat-band potential,” J. Phys. Chem. 94(4), 1612–1619 (1990).
    [Crossref]
  21. S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
    [Crossref]
  22. T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
    [Crossref]
  23. K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
    [Crossref]
  24. K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
    [Crossref]
  25. M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
    [Crossref]
  26. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
    [Crossref]
  27. T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Technol. 17(11), 2113–2120 (1999).
    [Crossref]
  28. H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
    [Crossref]
  29. M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
    [Crossref]
  30. S. Iwamoto and Y. Arakawa, “Enhancement of light emission from silicon by utilizing photonic nanostructures,” IEICE Trans. Electron. E95-C(2), 206–212 (2012).
    [Crossref]
  31. A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
    [Crossref]
  32. M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869 (2005).
    [Crossref]
  33. S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
    [Crossref]
  34. K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
    [Crossref]
  35. D. Sobczyńska and W. Torbicz, “ZrO2 gate pH-sensitive field effect transistor,” Sens. Actuators 6(2), 93–105 (1984).
    [Crossref]
  36. V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: simulation & experiment,” J. Electrochem. Soc. 158(10), P115–117 (2011).
    [Crossref]
  37. H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
    [Crossref]
  38. H. Altug and J. Vuckovic, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819 (2005).
    [Crossref]
  39. B. Soediono, Diode Lasers and Photonic Integrated Circuits (1989), 53.
  40. M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
    [Crossref]
  41. K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
    [Crossref]
  42. A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
    [Crossref]
  43. A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
    [Crossref]
  44. T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
    [Crossref]
  45. Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
    [Crossref]
  46. J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
    [Crossref]
  47. E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
    [Crossref]
  48. Y. Ota, S. Iwamoto, and Y. Arakawa, “Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity,” Opt. Lett. 40(14), 3372 (2015).
    [Crossref]

2018 (1)

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

2017 (4)

S. Hariharan and B. Karthikeyan, “Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles,” J. Lumin. 183, 1–6 (2017).
[Crossref]

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

M. Kaisti, “Detection principles of biological and chemical FET sensors,” Biosens. Bioelectron. 98, 437–448 (2017).
[Crossref]

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

2016 (3)

2015 (4)

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

Y. Ota, S. Iwamoto, and Y. Arakawa, “Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity,” Opt. Lett. 40(14), 3372 (2015).
[Crossref]

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

2014 (2)

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

2013 (1)

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

2012 (2)

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

S. Iwamoto and Y. Arakawa, “Enhancement of light emission from silicon by utilizing photonic nanostructures,” IEICE Trans. Electron. E95-C(2), 206–212 (2012).
[Crossref]

2011 (4)

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
[Crossref]

V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: simulation & experiment,” J. Electrochem. Soc. 158(10), P115–117 (2011).
[Crossref]

2010 (2)

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

2009 (1)

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref]

2008 (1)

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

2006 (1)

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

2005 (4)

H. Altug and J. Vuckovic, “Photonic crystal nanocavity array laser,” Opt. Express 13(22), 8819 (2005).
[Crossref]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869 (2005).
[Crossref]

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

2003 (2)

P. Bergveld, “Thirty years of ISFETOLOGY,” Sens. Actuators, B 88(1), 1–20 (2003).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

2002 (1)

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

2001 (2)

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

2000 (1)

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

1999 (1)

1997 (2)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

1996 (1)

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

1995 (1)

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

1992 (1)

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

1990 (1)

G. Chmiel and H. Gerischer, “Photoluminescence at a semiconductor-electrolyte contact around and beyond the flat-band potential,” J. Phys. Chem. 94(4), 1612–1619 (1990).
[Crossref]

1988 (1)

G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
[Crossref]

1986 (1)

H. Van Ryswyk and A. B. Ellis, “Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry,” J. Am. Chem. Soc. 108(9), 2454–2455 (1986).
[Crossref]

1984 (1)

D. Sobczyńska and W. Torbicz, “ZrO2 gate pH-sensitive field effect transistor,” Sens. Actuators 6(2), 93–105 (1984).
[Crossref]

1977 (1)

K. Mettler, “Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide,” Appl. Phys. 12(1), 75–82 (1977).
[Crossref]

Abe, H.

Accossato, P.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Adami, M.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Aithal, S.

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

Ali, M. M.

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Altug, H.

Arakawa, Y.

Y. Ota, S. Iwamoto, and Y. Arakawa, “Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity,” Opt. Lett. 40(14), 3372 (2015).
[Crossref]

S. Iwamoto and Y. Arakawa, “Enhancement of light emission from silicon by utilizing photonic nanostructures,” IEICE Trans. Electron. E95-C(2), 206–212 (2012).
[Crossref]

Ariga, M.

Arita, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Baba, T.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Technol. 17(11), 2113–2120 (1999).
[Crossref]

Baxter, G. T.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Bergveld, P.

P. Bergveld, “Thirty years of ISFETOLOGY,” Sens. Actuators, B 88(1), 1–20 (2003).
[Crossref]

Brainard, R. J.

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

Brinkmann, D.

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

Budz, H. A.

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Chang, C. T.

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

Chang, J. P.

V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: simulation & experiment,” J. Electrochem. Soc. 158(10), P115–117 (2011).
[Crossref]

Chang, K. M.

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

Chao, K. Y.

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

Chmiel, G.

G. Chmiel and H. Gerischer, “Photoluminescence at a semiconductor-electrolyte contact around and beyond the flat-band potential,” J. Phys. Chem. 94(4), 1612–1619 (1990).
[Crossref]

Chrimes, A. F.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Christiansen, S.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Chun, I. S.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Demuth, C.

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

Dong, H.

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

Dubowski, J. J.

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
[Crossref]

Duplan, V.

V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
[Crossref]

Ecken, H.

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Ehret, R.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Eickhoff, M.

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

Ellis, A. B.

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
[Crossref]

H. Van Ryswyk and A. B. Ellis, “Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry,” J. Am. Chem. Soc. 108(9), 2454–2455 (1986).
[Crossref]

Endo, T.

Ermolenko, Y.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

Fanigliulo, A.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Frost, E.

V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
[Crossref]

Frost, E. H.

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

Fujita, M.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

Furtmayr, F.

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

Furuichi, K.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Gerischer, H.

G. Chmiel and H. Gerischer, “Photoluminescence at a semiconductor-electrolyte contact around and beyond the flat-band potential,” J. Phys. Chem. 94(4), 1612–1619 (1990).
[Crossref]

Goshima, Y.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

Grattarola, M.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Hachuda, S.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

Han, I. Y.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Hariharan, S.

S. Hariharan and B. Karthikeyan, “Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles,” J. Lumin. 183, 1–6 (2017).
[Crossref]

Hassen, W. M.

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

Hayashi, K.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

Hizawa, T.

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

Hofmann, D. M.

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

Hwang, J. K.

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Iga, K.

Imai, Y.

Inoshita, K.

Ishida, M.

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

Iwamoto, S.

Y. Ota, S. Iwamoto, and Y. Arakawa, “Asymmetric out-of-plane power distribution in a two-dimensional photonic crystal nanocavity,” Opt. Lett. 40(14), 3372 (2015).
[Crossref]

S. Iwamoto and Y. Arakawa, “Enhancement of light emission from silicon by utilizing photonic nanostructures,” IEICE Trans. Electron. E95-C(2), 206–212 (2012).
[Crossref]

Iwasaki, H.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Jang, D. H.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Jankovic, V.

V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: simulation & experiment,” J. Electrochem. Soc. 158(10), P115–117 (2011).
[Crossref]

Joannopoulos, J. D.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

Jobst, G.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Kaisti, M.

M. Kaisti, “Detection principles of biological and chemical FET sensors,” Biosens. Bioelectron. 98, 437–448 (2017).
[Crossref]

Kalantar-Zadeh, K.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Karthikeyan, B.

S. Hariharan and B. Karthikeyan, “Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles,” J. Lumin. 183, 1–6 (2017).
[Crossref]

Kepler, K. D.

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

Khan, M. I.

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

Kieninger, J.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Kishi, Y.

Kita, S.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

Koyama, F.

Kuech, T. F.

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

Lanzi, M.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Lapierre, R. R.

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Lee, Y. H.

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Lee, Y. J.

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

Li, J.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Li, X.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Li, Y.

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

Lin, C. H.

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

Lisensky, G. C.

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
[Crossref]

Lu, Y.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Lüth, H.

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Mahdavi, A.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Martinoia, S.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Maruyama, Y.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref]

Matsutani, A.

McConnell, H. M.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Meeker, K.

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

Mettler, K.

K. Mettler, “Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide,” Appl. Phys. 12(1), 75–82 (1977).
[Crossref]

Meyer, G. J.

G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
[Crossref]

Miller, D. L.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Misawa, H.

Miyamoto, K.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

Miyamoto, T.

Moore, D. E.

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

Moser, I.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Mourzina, Y.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Mukherjee, K.

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

Nakada, T.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Nakagawa, A.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

Nakamura, F.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

Näther, N.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Nazemi, E.

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

Nicolini, C.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Nishijima, Y.

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

Noda, S.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

M. Yokoyama and S. Noda, “Finite-difference time-domain simulation of two-dimensional photonic crystal surface-emitting laser,” Opt. Express 13(8), 2869 (2005).
[Crossref]

Nomoto, M.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

Nozaki, K.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

Ota, S.

Ota, Y.

Otsuka, S.

S. Kita, S. Hachuda, S. Otsuka, T. Endo, Y. Imai, Y. Nishijima, H. Misawa, and T. Baba, “Super-sensitivity in label-free protein sensing using a nanoslot nanolaser,” Opt. Express 19(18), 17683 (2011).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Ou, J. Z.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Owicki, J. C.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Paddeu, S.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Paraïso, T. K.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Parce, J. W.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Parodi, M. T.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Patel, M.

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

Pitchford, S.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Poghossian, A.

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Rolka, D.

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

Rossi, A.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Ryu, H. Y.

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Saito, Y.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Sakamoto, A.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

Sakata, A.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

Sakemoto, M.

Sano, D.

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

Sarau, G.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Sartore, M.

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

Sawada, K.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref]

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

Schöning, M. J.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Schubert, E. F.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

Seker, F.

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

Shoukat, R.

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

Sigworth, L. A.

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

Simonis, A.

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Slotwinski, K.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Sobczynska, D.

D. Sobczyńska and W. Torbicz, “ZrO2 gate pH-sensitive field effect transistor,” Sens. Actuators 6(2), 93–105 (1984).
[Crossref]

Soediono, B.

B. Soediono, Diode Lasers and Photonic Integrated Circuits (1989), 53.

Song, D. S.

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Strano, M. S.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Takao, H.

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

Takemura, Y.

Tanaka, H.

Tanaka, Y.

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

Tang, L.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Tang, S. Y.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Terao, S.

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref]

Teubert, J.

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

Torbicz, W.

D. Sobczyńska and W. Torbicz, “ZrO2 gate pH-sensitive field effect transistor,” Sens. Actuators 6(2), 93–105 (1984).
[Crossref]

Ui, Y.

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Urban, G. A.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Van Ryswyk, H.

H. Van Ryswyk and A. B. Ellis, “Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry,” J. Am. Chem. Soc. 108(9), 2454–2455 (1986).
[Crossref]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

Vollmer, F.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Vuckovic, J.

Wada, H. G.

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Wagner, T.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Wallys, J.

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

Wang, Y.

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Wang, Z.

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Watanabe, H.

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

Watanabe, K.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

M. Sakemoto, Y. Kishi, K. Watanabe, H. Abe, S. Ota, Y. Takemura, and T. Baba, “Cell imaging using GaInAsP semiconductor photoluminescence,” Opt. Express 24(10), 11232 (2016).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Watanabe, T.

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

Wego, M.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Weltin, A.

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Werner, C. F.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

Winder, E. J.

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

Xavier, J.

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Yokoyama, M.

Yonekura, J.

Yoshinobu, T.

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

Anal. Chem. (1)

L. Tang, I. S. Chun, Z. Wang, J. Li, X. Li, and Y. Lu, “DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide,” Anal. Chem. 85(20), 9522–9527 (2013).
[Crossref]

Appl. Phys. (1)

K. Mettler, “Photoluminescence as a tool for the study of the electronic surface properties of gallium arsenide,” Appl. Phys. 12(1), 75–82 (1977).
[Crossref]

Appl. Phys. Lett. (2)

K. Watanabe, Y. Kishi, S. Hachuda, T. Watanabe, M. Sakemoto, Y. Nishijima, and T. Baba, “Simultaneous detection of refractive index and surface charges in nanolaser biosensors,” Appl. Phys. Lett. 106(2), 021106 (2015).
[Crossref]

H. Y. Ryu, J. K. Hwang, D. S. Song, I. Y. Han, Y. H. Lee, and D. H. Jang, “Effect of nonradiative recombination on light emitting properties of two-dimensional photonic crystal slab structures,” Appl. Phys. Lett. 78(9), 1174–1176 (2001).
[Crossref]

Biosens. Bioelectron. (3)

Y. Maruyama, S. Terao, and K. Sawada, “Label free CMOS DNA image sensor based on the charge transfer technique,” Biosens. Bioelectron. 24(10), 3108–3112 (2009).
[Crossref]

K. Watanabe, M. Nomoto, F. Nakamura, S. Hachuda, A. Sakata, T. Watanabe, Y. Goshima, and T. Baba, “Label-free and spectral-analysis-free detection of neuropsychiatric disease biomarkers using an ion-sensitive GaInAsP nanolaser biosensor,” Biosens. Bioelectron. 117, 161–167 (2018).
[Crossref]

M. Kaisti, “Detection principles of biological and chemical FET sensors,” Biosens. Bioelectron. 98, 437–448 (2017).
[Crossref]

Chem. Rev. (1)

F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, “Surface chemistry of prototypical bulk II-VI and III-V semiconductors and implications for chemical sensing,” Chem. Rev. 100(7), 2505–2536 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Sel. Top. Quantum Electron. 8(2), 231–237 (2002).
[Crossref]

M. Fujita, Y. Tanaka, and S. Noda, “Light emission from silicon in photonic crystal nanocavity,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1090–1097 (2008).
[Crossref]

S. Kita, K. Nozaki, S. Hachuda, H. Watanabe, Y. Saito, S. Otsuka, T. Nakada, Y. Arita, and T. Baba, “Photonic crystal point-shift nanolasers with and without nanoslots - Design, fabrication, lasing, and sensing characteristics,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1632–1647 (2011).
[Crossref]

K. Nozaki, A. Nakagawa, D. Sano, and T. Baba, “Ultralow threshold and single-mode lasing in microgear lasers and its fusion with quasi-periodic photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1355–1360 (2003).
[Crossref]

IEICE Trans. Electron. (1)

S. Iwamoto and Y. Arakawa, “Enhancement of light emission from silicon by utilizing photonic nanostructures,” IEICE Trans. Electron. E95-C(2), 206–212 (2012).
[Crossref]

J. Am. Chem. Soc. (2)

H. Van Ryswyk and A. B. Ellis, “Optical coupling of surface chemistry. Photoluminescent properties of a derivatized gallium arsenide surface undergoing redox chemistry,” J. Am. Chem. Soc. 108(9), 2454–2455 (1986).
[Crossref]

G. J. Meyer, G. C. Lisensky, and A. B. Ellis, “Evidence for adduct formation at the semiconductor-gas interface. Photoluminescent properties of cadmium selenide in the presence of amines,” J. Am. Chem. Soc. 110(15), 4914–4918 (1988).
[Crossref]

J. Appl. Phys. (1)

H. A. Budz, M. M. Ali, Y. Li, and R. R. Lapierre, “Photoluminescence model for a hybrid aptamer-GaAs optical biosensor,” J. Appl. Phys. 107(10), 104702 (2010).
[Crossref]

J. Chem. Educ. (1)

T. F. Kuech, A. B. Ellis, R. J. Brainard, K. D. Kepler, D. E. Moore, E. J. Winder, and G. C. Lisensky, “Modulation of the photoluminescence of semiconductors by surface adduct formation: An application of inorganic photochemsitry to chemical sensing,” J. Chem. Educ. 74(6), 680–684 (1997).
[Crossref]

J. Electrochem. Soc. (1)

V. Jankovic and J. P. Chang, “HfO2 and ZrO2–based microchemical ion sensitive field effect transistor (ISFET) sensors: simulation & experiment,” J. Electrochem. Soc. 158(10), P115–117 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Lumin. (1)

S. Hariharan and B. Karthikeyan, “Band bending effect induced non-enzymatic highly sensitive glucose sensing in ZnO nanoparticles,” J. Lumin. 183, 1–6 (2017).
[Crossref]

J. Phys. Chem. (2)

G. Chmiel and H. Gerischer, “Photoluminescence at a semiconductor-electrolyte contact around and beyond the flat-band potential,” J. Phys. Chem. 94(4), 1612–1619 (1990).
[Crossref]

K. D. Kepler, G. C. Lisensky, M. Patel, L. A. Sigworth, and A. B. Ellis, “Surface-bound carbonyl compounds as Lewis acids. Photoluminescence as a probe for the binding of ketones and aldehydes to cadmium sulfide and cadmium selenide surfaces,” J. Phys. Chem. 99(43), 16011–16017 (1995).
[Crossref]

Lab Chip (1)

A. Weltin, K. Slotwinski, J. Kieninger, I. Moser, G. Jobst, M. Wego, R. Ehret, and G. A. Urban, “Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem,” Lab Chip 14(1), 138–146 (2014).
[Crossref]

Methods (1)

T. Yoshinobu, H. Iwasaki, Y. Ui, K. Furuichi, Y. Ermolenko, Y. Mourzina, T. Wagner, N. Näther, and M. J. Schöning, “The light-addressable potentiometric sensor for multi-ion sensing and imaging,” Methods 37(1), 94–102 (2005).
[Crossref]

Microsyst. Technol. (1)

M. I. Khan, K. Mukherjee, R. Shoukat, and H. Dong, “A review on pH sensitive materials for sensors and detection methods,” Microsyst. Technol. 23(10), 4391–4404 (2017).
[Crossref]

MRS Commun. (1)

T. Baba, “Biosensing using photonic crystal nanolasers,” MRS Commun. 5(4), 555–564 (2015).
[Crossref]

Nano Lett. (2)

J. Wallys, J. Teubert, F. Furtmayr, D. M. Hofmann, and M. Eickhoff, “Bias-enhanced optical pH response of group III-nitride nanowires,” Nano Lett. 12(12), 6180–6186 (2012).
[Crossref]

J. Z. Ou, A. F. Chrimes, Y. Wang, S. Y. Tang, M. S. Strano, and K. Kalantar-Zadeh, “Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems,” Nano Lett. 14(2), 857–863 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett. 78(17), 3294–3297 (1997).
[Crossref]

Sci. Rep. (1)

A. Mahdavi, G. Sarau, J. Xavier, T. K. Paraïso, S. Christiansen, and F. Vollmer, “Maximizing photoluminescence extraction in silicon photonic crystal slabs,” Sci. Rep. 6(1), 25135–6 (2016).
[Crossref]

Science (1)

H. M. McConnell, J. C. Owicki, J. W. Parce, D. L. Miller, G. T. Baxter, H. G. Wada, and S. Pitchford, “The cytosensor microphysiometer: biological applications of silicon technology,” Science 257(5078), 1906–1912 (1992).
[Crossref]

Sens. Actuators (1)

D. Sobczyńska and W. Torbicz, “ZrO2 gate pH-sensitive field effect transistor,” Sens. Actuators 6(2), 93–105 (1984).
[Crossref]

Sens. Actuators, B (8)

V. Duplan, E. Frost, and J. J. Dubowski, “A photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli,” Sens. Actuators, B 160(1), 46–51 (2011).
[Crossref]

P. Bergveld, “Thirty years of ISFETOLOGY,” Sens. Actuators, B 88(1), 1–20 (2003).
[Crossref]

M. J. Schöning, D. Brinkmann, D. Rolka, C. Demuth, and A. Poghossian, “CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure,” Sens. Actuators, B 111-112, 423–429 (2005).
[Crossref]

K. Miyamoto, K. Hayashi, A. Sakamoto, C. F. Werner, T. Wagner, M. J. Schöning, and T. Yoshinobu, “A high-Q resonance-mode measurement of EIS capacitive sensor by elimination of series resistance,” Sens. Actuators, B 248, 1006–1010 (2017).
[Crossref]

E. Nazemi, S. Aithal, W. M. Hassen, E. H. Frost, and J. J. Dubowski, “GaAs/AlGaAs heterostructure based photonic biosensor for rapid detection of Escherichia coli in phosphate buffered saline solution,” Sens. Actuators, B 207(Part A), 556–562 (2015).
[Crossref]

A. Poghossian, T. Yoshinobu, A. Simonis, H. Ecken, H. Lüth, and M. J. Schöning, “Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?” Sens. Actuators, B 78(1-3), 237–242 (2001).
[Crossref]

A. Fanigliulo, P. Accossato, M. Adami, M. Lanzi, S. Martinoia, S. Paddeu, M. T. Parodi, A. Rossi, M. Sartore, M. Grattarola, and C. Nicolini, “Comparison between a LAPS and an FET-based sensor for cell-metabolism detection,” Sens. Actuators, B 32(1), 41–48 (1996).
[Crossref]

T. Hizawa, K. Sawada, H. Takao, and M. Ishida, “Fabrication of a two-dimensional pH image sensor using a charge transfer technique,” Sens. Actuators, B 117(2), 509–515 (2006).
[Crossref]

Sensors (1)

K. M. Chang, C. T. Chang, K. Y. Chao, and C. H. Lin, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors 10(5), 4643–4654 (2010).
[Crossref]

Other (1)

B. Soediono, Diode Lasers and Photonic Integrated Circuits (1989), 53.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of ion sensing using PL of the GaInAsP semiconductor PC structure.
Fig. 2.
Fig. 2. Scanning electron micrograph (SEM) of the PCs formed in the GaInAsP epilayers (upper panel), photonic bands (middle panel, 2r/a or 2r/a′ = 0.55; the blue lines show the light lines of the solution, and the inset shows the Brillouin zone), and PL spectrum with different 2r/a or 2r/a′ (lower panel; thick lines represent the envelope of all the spectra for different a or a′). (a) Square PC (2r/a = 0.55). (b) Close-packed PC (2r/a = 0.55). (c) Honeycomb PC #1 (2r/a′ = 0.55).
Fig. 3.
Fig. 3. Calculation results of the pH sensitivity |SpH|. (a) Radiative recombination efficiency ηr and nonradiative fraction ηs as a function of the carrier density N for close-packed PC (a = 800 nm, 2r/a = 0.60). (b) pH sensitivity as a function of N under the same condition of (a). (c) pH sensitivity in various PCs as a function of the hole pitch at Ppump = 10 mW. 2r/a = 0.60 for square and close-packed PCs, 2r/a′ = 0.60 for honeycomb PCs #1, and 2rs/a′ = 0.24 for honeycomb #2 are assumed. Γ2 represents that of the lowest frequency band edge of Γ2 at λ = 1550 nm.
Fig. 4.
Fig. 4. Designed SVR and measured PPL/Ppump and |SpH| for three PCs: (a) Square PC, (b) Close-packed PC, and (c) Honeycomb PC #1. PPL/Ppump is proportional to the light extraction efficiency ηext. The black dots indicate the maximum values of PPL/Ppump and |SpH|.
Fig. 5.
Fig. 5. Honeycomb PC #2 consisting of six small holes at each lattice point. (a) SEM image of the fabricated structure. (b) Photonic band for a′′/a′ = 0.3 and 2rs/a′ = 0.24. The blue lines indicate the light line of the solution, and the inset shows the Brillouin zone. (c, d) Calculation results of the normalized modal electrical field |E(r)|2 = Ex2 + Ey2 (upper panel) and the in-plane wave vector component |F(k)|2 (lower panel) of the lowest frequency band at Γ2 in honeycomb PC #1 (2r/a′ = 0.60) and honeycomb PC #2 (2rs/a′ = 0.22, a′′/a′ = 0.3), respectively. F(k) is obtained by spatial Fourier transforming E(r). The outer and inner white circles indicate the light line of the solution and the detectable angle of 50 × objective lens with a numerical aperture of 0.55, respectively. (e) PL spectra for different 2rs/a′ for a′ = 480 nm and a′′/a′ = 0.3 (gray filled lines). The PL spectrum without gray is that of honeycomb PC #1 (2r/a′ = 0.60) for comparison.
Fig. 6.
Fig. 6. pH sensitivity of honeycomb PC #2. (a) Designed SVR and measured PPL/Ppump and |SpH| as a function of 2rs. (b) |SpH| measured for different a′.
Fig. 7.
Fig. 7. Real-time observation of the relative PL intensity for different pH around 7 in honeycomb PC #2 (a′ = 420 nm, 2rs/a′ = 0.23). Each plot was obtained by 30 times averaging.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

η abs P pump ω pump V a = A N + B N 2 + C N 3 ,
P PL = η abs η ext η mes ω PL V a B N 2 = η abs η r η ext η mes P pump ,
η r = B N 2 A N + B N 2 + C N 3 , η s = A N A N + B N 2 + C N 3 .
A 1 τ 0 + v s S V a ,
v s ( 0.1 pH + 0.8 ) × 10 4 [ cm/s ]
B ( 0.033 pH + 1.67 ) × 10 10 [ c m 3 / s ]
S Ion Δ P PL / Δ P PL P PL P PL Δ c / Δ c c c = ( P PL P PL ) / ( P PL P PL ) P PL P PL ( c c ) / ( c c ) c c .
S pH = 10 0.1 ( P PL [ dB] P PL [ dB]) 1 10 ( pH pH ) 1 0.1 ( P PL [ dB] P PL [ dB]) pH pH .
S pH = P PL [ dB ] P PL [ dB] pH pH .

Metrics