Abstract

An ultrafast coherent long wavelength MIR source based on difference frequency generation was demonstrated. An average power of 2.5 mW at ∼18 μm was achieved. The angular distribution of the generated MIR source under the condition of tight-focusing limit shows the onset of conical emission of the MIR beam due to on-axis phase mismatching.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely-tunable mid-infrared frequency comb source based on difference frequency generation

Axel Ruehl, Alessio Gambetta, Ingmar Hartl, Martin E. Fermann, Kjeld S. E. Eikema, and Marco Marangoni
Opt. Lett. 37(12) 2232-2234 (2012)

Intra-pulse difference-frequency generation of mid-infrared (2.7–20  μm) by random quasi-phase-matching

Jinwei Zhang, Kilian Fritsch, Qing Wang, Ferenc Krausz, Ka Fai Mak, and Oleg Pronin
Opt. Lett. 44(12) 2986-2989 (2019)

High-field harmonic generation in the tight-focusing limit

D. M. Mittleman, D. C. Douglass, Z. Henis, O. R. Wood, R. R. Freeman, and T. J. McIlrath
J. Opt. Soc. Am. B 13(1) 170-179 (1996)

References

  • View by:
  • |
  • |
  • |

  1. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003).
  2. C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
    [Crossref]
  3. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  4. V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
    [Crossref]
  5. A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8-14 μm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38(7), 1155–1157 (2013).
    [Crossref] [PubMed]
  6. M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe(2),” Opt. Express 23(3), 2730–2736 (2015).
    [Crossref] [PubMed]
  7. G. Zhou, Q. Cao, F. X. Kärtner, and G. Chang, “Energy scalable, offset-free ultrafast mid-infrared source harnessing self-phase-modulation-enabled spectral selection,” Opt. Lett. 43(12), 2953–2956 (2018).
    [Crossref] [PubMed]
  8. T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm,” Opt. Lett. 41(21), 4863–4866 (2016).
    [Crossref] [PubMed]
  9. I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
    [Crossref]
  10. T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
    [Crossref] [PubMed]
  11. Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
    [Crossref] [PubMed]
  12. A. M. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 μm using a two-color Yb fiber chirped pulse amplifier,” Opt. Lett. 36(7), 1080–1082 (2011).
    [Crossref] [PubMed]
  13. A. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 µm using a two-color Yb fiber chirped pulse amplifier: erratum,” Opt. Lett. 43(2), 316 (2018).
    [Crossref] [PubMed]
  14. M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped-pulse amplifier,” Opt. Lett. 37(17), 3570–3572 (2012).
    [Crossref] [PubMed]
  15. M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped pulse amplifier: erratum,” Opt. Lett. 43(2), 353 (2018).
    [Crossref] [PubMed]
  16. X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
    [Crossref]
  17. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phy. Rev. A 15(3), 1143–1156 (1977).
    [Crossref]
  18. Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
    [Crossref] [PubMed]

2019 (2)

2018 (4)

2016 (1)

2015 (3)

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe(2),” Opt. Express 23(3), 2730–2736 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (3)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[Crossref] [PubMed]

M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped-pulse amplifier,” Opt. Lett. 37(17), 3570–3572 (2012).
[Crossref] [PubMed]

2011 (1)

2008 (1)

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

1977 (1)

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phy. Rev. A 15(3), 1143–1156 (1977).
[Crossref]

Agnesi, A.

Al-Kadry, A.

Al-Kadry, A. M.

Apolonski, A.

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Badikov, D.

Badikov, V.

Bauer, C.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Beutler, M.

Biegert, J.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Blaser, S.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Braunschweig, B.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Burgmeier, J.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Butler, T. P.

Büttner, E.

Cao, Q.

Cassinerio, M.

Chang, G.

Coluccelli, N.

Farinello, P.

Fill, E.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Gaida, C.

Galzerano, G.

Gambetta, A.

Gatti, D.

Gebhardt, M.

Gerz, D.

Gessner, J. A.

Giessen, H.

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Hajialamdari, M.

Heuermann, T.

Heusinger, M.

Hoang, T.

X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Hofer, C.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Holl, G.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Hvozdara, L.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Karpowicz, N.

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Kärtner, F. X.

Kessel, A.

Kim, K. Y.

Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[Crossref] [PubMed]

Krausz, F.

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Laporta, P.

Lilienfein, N.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Limpert, J.

Long, P.

X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Mak, K. F.

Marangoni, M.

Morris, J. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phy. Rev. A 15(3), 1143–1156 (1977).
[Crossref]

Mörz, F.

Müller, A.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Nagl, N.

Oh, T. I.

Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[Crossref] [PubMed]

Pervak, V.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Petrov, V.

Pronin, O.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Pupeza, I.

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Rimke, I.

Sánchez, D.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Schade, W.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Schweinberger, W.

Seidel, M.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Sharma, A. K.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Shen, Y. R.

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phy. Rev. A 15(3), 1143–1156 (1977).
[Crossref]

Siefke, T.

Steinle, T.

Steinmann, A.

Strickland, D.

Su, X.

X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Vamos, L.

Wang, Q.

Wei, Z.

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Willer, U.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

Xu, J.

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

You, Y. S.

Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[Crossref] [PubMed]

Zeitner, U.

Zhang, J.

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Zheng, Y.

X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Zhou, G.

Appl. Phys. B (1)

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B 92(3), 327–333 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Su, T. Hoang, P. Long, Y. Zheng, and D. Strickland, “A Compact High-Average-Power Femtosecond Fiber-Coupled Two-Color CPA System,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–5 (2018).
[Crossref]

Nat. Photonics (2)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N. Karpowicz, V. Pervak, E. Fill, O. Pronin, Z. Wei, F. Krausz, A. Apolonski, and J. Biegert, “High-power sub-two-cycle mid-infrared pulses at 100 MHz repetition rate,” Nat. Photonics 9(11), 721–724 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (9)

G. Zhou, Q. Cao, F. X. Kärtner, and G. Chang, “Energy scalable, offset-free ultrafast mid-infrared source harnessing self-phase-modulation-enabled spectral selection,” Opt. Lett. 43(12), 2953–2956 (2018).
[Crossref] [PubMed]

T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “Ultra-stable high average power femtosecond laser system tunable from 1.33 to 20 μm,” Opt. Lett. 41(21), 4863–4866 (2016).
[Crossref] [PubMed]

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza, “Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region,” Opt. Lett. 44(7), 1730–1733 (2019).
[Crossref] [PubMed]

Q. Wang, J. Zhang, A. Kessel, N. Nagl, V. Pervak, O. Pronin, and K. F. Mak, “Broadband mid-infrared coverage (2-17 μm) with few-cycle pulses via cascaded parametric processes,” Opt. Lett. 44(10), 2566–2569 (2019).
[Crossref] [PubMed]

A. M. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 μm using a two-color Yb fiber chirped pulse amplifier,” Opt. Lett. 36(7), 1080–1082 (2011).
[Crossref] [PubMed]

A. Al-Kadry and D. Strickland, “Generation of 400 μW at 17.5 µm using a two-color Yb fiber chirped pulse amplifier: erratum,” Opt. Lett. 43(2), 316 (2018).
[Crossref] [PubMed]

M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped-pulse amplifier,” Opt. Lett. 37(17), 3570–3572 (2012).
[Crossref] [PubMed]

M. Hajialamdari and D. Strickland, “Tunable mid-infrared source from an ultrafast two-color Yb:fiber chirped pulse amplifier: erratum,” Opt. Lett. 43(2), 353 (2018).
[Crossref] [PubMed]

A. Gambetta, N. Coluccelli, M. Cassinerio, D. Gatti, P. Laporta, G. Galzerano, and M. Marangoni, “Milliwatt-level frequency combs in the 8-14 μm range via difference frequency generation from an Er:fiber oscillator,” Opt. Lett. 38(7), 1155–1157 (2013).
[Crossref] [PubMed]

Phy. Rev. A (1)

J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phy. Rev. A 15(3), 1143–1156 (1977).
[Crossref]

Phys. Rev. Lett. (1)

Y. S. You, T. I. Oh, and K. Y. Kim, “Off-Axis Phase-Matched Terahertz Emission from Two-Color Laser-Induced Plasma Filaments,” Phys. Rev. Lett. 109(18), 183902 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

V. Petrov, “Frequency down-conversion of solid-state laser sources to the mid-infrared spectral range using non-oxide nonlinear crystals,” Prog. Quantum Electron. 42, 1–106 (2015).
[Crossref]

Other (1)

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Input spectrum of the two colors.
Fig. 2
Fig. 2 Experimental setup for MIR generation.
Fig. 3
Fig. 3 MIR power in Type 2 phase matching changes with different focal spot size. The solid curves are numerical simulations in different walk-off angle conditions (ζ = 0 and −0.06 rad) and the points are experimental data. The error bars represent the measurement uncertainties.
Fig. 4
Fig. 4 Experimental results and simulations about the Angular Distribution of the Generated MIR with different focused beam radius of (a) 17.8 ± 2.9 µm (b) 26.7 ± 4.3 µm (c) 35.6 ± 5.9 µm (d) 80.1 ± 13.1 µm.
Fig. 5
Fig. 5 MIR Spectrum with Different Focal beam radius of (a) 17.8 ± 2.9 µm (b) 80.1 ± 13.1 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d P ± (θ,ϕ) dΩ = c 2π cos 2 θ | E T± ( k T = ω c sinθ( x ^ cosϕ+ y ^ sinϕ) | 2 ,

Metrics