Abstract

Due to the chromatic dispersion properties inherent in all optical materials, even the best-designed multispectral objective will exhibit residual chromatic aberration. Here, we demonstrate a multispectral microscope with a computational scheme based on the Fourier ptychographic microscopy (FPM) to correct these effects in order to render undistorted, in-focus images. The microscope consists of 4 spectral channels ranging from 405 nm to 1552 nm. After the computational aberration correction, it can achieve isotropic resolution enhancement as verified with the Siemens star sample. We image a flip-chip to show the promise of our system to conduct fault detection on silicon chips. This computational approach provides a cost-efficient strategy for high quality multispectral imaging over a broad spectral range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wide field-of-view fluorescence image deconvolution with aberration-estimation from Fourier ptychography

Jaebum Chung, Jinho Kim, Xiaoze Ou, Roarke Horstmeyer, and Changhuei Yang
Biomed. Opt. Express 7(2) 352-368 (2016)

Quantitative differential phase contrast (DPC) microscopy with computational aberration correction

Michael Chen, Zachary F. Phillips, and Laura Waller
Opt. Express 26(25) 32888-32899 (2018)

Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation

Jaebum Chung, Gloria W. Martinez, Karen C. Lencioni, Srinivas R. Sadda, and Changhuei Yang
Optica 6(5) 647-661 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68(2), 323–333 (2004).
    [Crossref]
  2. Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
    [Crossref]
  3. Y. W. Chu, F. Chen, Y. Tang, T. Chen, Y. X. Yu, H. L. Jin, L. B. Guo, Y. F. Lu, and X. Y. Zeng, “Diagnosis of nasopharyngeal carcinoma from serum samples using hyperspectral imaging combined with a chemometric method,” Opt. Express 26(22), 28661–28671 (2018).
    [Crossref]
  4. C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal. Lett. 38(5), 735–752 (2005).
    [Crossref]
  5. D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
    [Crossref]
  6. K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
    [Crossref]
  7. J. Chung, G. W. Martinez, K. C. Lencioni, S. R. Sadda, and C. Yang, “Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation,” Optica 6(5), 647–661 (2019).
    [Crossref]
  8. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
    [Crossref]
  9. J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
    [Crossref]
  10. M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983).
    [Crossref]
  11. L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
    [Crossref]
  12. L. Tian, J. C. Petruccelli, and G. Barbastathis, “Nonlinear diffusion regularization for transport of intensity phase imaging,” Opt. Lett. 37(19), 4131–4133 (2012).
    [Crossref]
  13. C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter–theory and applications,” Opt. Express 21(5), 5346–5362 (2013).
    [Crossref]
  14. C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
    [Crossref]
  15. R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
    [Crossref]
  16. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21(15), 2758–2769 (1982).
    [Crossref]
  17. R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9(7), 1072–1085 (1992).
    [Crossref]
  18. L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by Kalman filtering,” Opt. Express 19(3), 2805–2814 (2011).
    [Crossref]
  19. J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear optimization algorithm for partially coherent phase retrieval and source recovery,” IEEE Trans. Comput. Imaging 2(3), 310–322 (2016).
    [Crossref]
  20. C. Shen, J. Tan, C. Wei, and Z. Liu, “Coherent diffraction imaging by moving a lens,” Opt. Express 24(15), 16520–16529 (2016).
    [Crossref]
  21. C. Shen, X. Bao, J. Tan, S. Liu, and Z. Liu, “Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint,” Opt. Express 25(14), 16235–16249 (2017).
    [Crossref]
  22. A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
    [Crossref]
  23. A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
    [Crossref]
  24. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
    [Crossref]
  25. A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27(4), 5433–5446 (2019).
    [Crossref]
  26. A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
    [Crossref]
  27. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref]
  28. X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
    [Crossref]
  29. L. H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
    [Crossref]
  30. A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
    [Crossref]
  31. C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18), 20724–20744 (2016).
    [Crossref]
  32. J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7(11), 4787–4802 (2016).
    [Crossref]
  33. L. Tian and L. Waller, “3D intensity and phase imaging from light field measurements in an LED array microscope,” Optica 2(2), 104–111 (2015).
    [Crossref]
  34. R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
    [Crossref]
  35. S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
    [Crossref]
  36. X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
    [Crossref]
  37. A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
    [Crossref]
  38. R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
    [Crossref]
  39. G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
    [Crossref]
  40. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  41. H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.
  42. R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
    [Crossref]
  43. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
    [Crossref]
  44. K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).
  45. Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013).
    [Crossref]

2019 (3)

2018 (1)

2017 (3)

C. Shen, X. Bao, J. Tan, S. Liu, and Z. Liu, “Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint,” Opt. Express 25(14), 16235–16249 (2017).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

2016 (7)

2015 (3)

2014 (5)

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref]

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

2013 (6)

2012 (1)

2011 (1)

2010 (1)

2007 (1)

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

2005 (2)

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal. Lett. 38(5), 735–752 (2005).
[Crossref]

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

2004 (2)

E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68(2), 323–333 (2004).
[Crossref]

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

2002 (1)

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
[Crossref]

2001 (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

1999 (1)

D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
[Crossref]

1992 (1)

1983 (1)

M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983).
[Crossref]

1982 (1)

1979 (1)

R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
[Crossref]

Agarwal, K.

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Akbari, N.

Arena, E. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Asundi, A.

Bao, X.

Barbastathis, G.

Barton, D. L.

D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
[Crossref]

Bernhard-Höfer, K.

D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
[Crossref]

Beverage, J. L.

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
[Crossref]

Bian, Z.

Bifano, T.

Bifano, T. G.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Blechinger, F.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.

Chalus, P.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Chen, F.

Chen, M.

Chen, Q.

Chen, R.

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Chen, T.

Chen, X.

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Chidlaw, R.

R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
[Crossref]

Chu, Y. W.

Chung, J.

Chung, P. L.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

Cilingiroglu, T. B.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Cole, E. I.

D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
[Crossref]

Dan, D.

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Descour, M. R.

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
[Crossref]

DeZonia, B. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Dong, J.

Dong, S.

Durand, F.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

Edmond, A.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Eliceiri, K. W.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Faulkner, H. M. L.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Feizi, A.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref]

Fergus, R.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

Fienup, J. R.

Freeman, W. T.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

Goldberg, B.

Goldberg, B. B.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Gonsalves, R. A.

R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
[Crossref]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Greenbaum, A.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref]

Gross, H.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.

Guo, K.

Guo, L. B.

Heintzmann, R.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Hiner, M. C.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Horstmeyer, R.

Jin, H. L.

Kandukuri, S. R.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

Koh, L. S.

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Lei, M.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Lencioni, K. C.

Levin, A.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

Liu, S.

Liu, Z.

Lu, H.

Lu, Y.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013).
[Crossref]

Lu, Y. F.

Luo, W.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

Martinez, G. W.

Min, J.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

Ou, X.

Ozcan, A.

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref]

Pan, A.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27(4), 5433–5446 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Paxman, R. G.

Peschka, M.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.

Petruccelli, J. C.

Pirard, E.

E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68(2), 323–333 (2004).
[Crossref]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

Ponda, S.

Popescu, G.

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Qu, W.

Rodenburg, J. M.

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Roggo, Y.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Rueden, C. T.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Sadda, S. R.

Schindelin, J.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Schulz, T. J.

Shack, R.

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

Shack, R. V.

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
[Crossref]

Shen, C.

Sheppard, C. J. R.

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Shiradkar, R.

Soltanolkotabi, M.

Sun, J.

Tan, J.

Tang, G.

Tang, Y.

Teague, M. R.

M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983).
[Crossref]

Tian, L.

Tran, C. D.

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal. Lett. 38(5), 735–752 (2005).
[Crossref]

Tsang, M.

Ulmschneider, M.

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Ünlü, M. S.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Ünlü, S.

Varma, P.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear optimization algorithm for partially coherent phase retrieval and source recovery,” IEEE Trans. Comput. Imaging 2(3), 310–322 (2016).
[Crossref]

Vigil, K.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Waller, L.

Walter, A. E.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Wang, Z.

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Wei, C.

Xin, H.

Yang, C.

J. Chung, G. W. Martinez, K. C. Lencioni, S. R. Sadda, and C. Yang, “Computational aberration compensation by coded-aperture-based correction of aberration obtained from optical Fourier coding and blur estimation,” Optica 6(5), 647–661 (2019).
[Crossref]

J. Chung, H. Lu, X. Ou, H. Zhou, and C. Yang, “Wide-field Fourier ptychographic microscopy using laser illumination source,” Biomed. Opt. Express 7(11), 4787–4802 (2016).
[Crossref]

R. Horstmeyer, J. Chung, X. Ou, G. Zheng, and C. Yang, “Diffraction tomography with Fourier ptychography,” Optica 3(8), 827–835 (2016).
[Crossref]

X. Ou, J. Chung, R. Horstmeyer, and C. Yang, “Aperture scanning Fourier ptychographic microscopy,” Biomed. Opt. Express 7(8), 3140–3150 (2016).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
[Crossref]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

Yang, S. Y.

Yao, B.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27(4), 5433–5446 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Yeh, L. H.

Yu, Y.

Yu, Y. X.

Yurt, A.

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

Zeng, X. Y.

Zhang, Y.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

Zhao, T.

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

Zheng, G.

Zhong, J.

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear optimization algorithm for partially coherent phase retrieval and source recovery,” IEEE Trans. Comput. Imaging 2(3), 310–322 (2016).
[Crossref]

L. H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
[Crossref]

Zhou, H.

Zhou, M.

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

Zügge, H.

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.

Zuo, C.

ACM T. Graphic. (1)

A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional camera with a coded aperture,” ACM T. Graphic. 26(3), 70 (2007).
[Crossref]

Anal. Chim. Acta (1)

Y. Roggo, A. Edmond, P. Chalus, and M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535(1-2), 79–87 (2005).
[Crossref]

Anal. Lett. (1)

C. D. Tran, “Principles, instrumentation, and applications of infrared multispectral imaging, an overview,” Anal. Lett. 38(5), 735–752 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett. 85(20), 4795–4797 (2004).
[Crossref]

Biomed. Opt. Express (2)

BMC Bioinf. (1)

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri, “ImageJ2: ImageJ for the next generation of scientific image data,” BMC Bioinf. 18(1), 529 (2017).
[Crossref]

Electronic Device Failure Analysis (1)

K. Vigil, Y. Lu, A. Yurt, T. B. Cilingiroglu, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Integrated circuit super-resolution failure analysis with solid immersion lenses,” Electronic Device Failure Analysis 16, 26–32 (2014).

IEEE Trans. Comput. Imaging (1)

J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear optimization algorithm for partially coherent phase retrieval and source recovery,” IEEE Trans. Comput. Imaging 2(3), 310–322 (2016).
[Crossref]

J. Biomed. Opt. (1)

A. Pan, Y. Zhang, T. Zhao, Z. Wang, D. Dan, M. Lei, and B. Yao, “System calibration method for Fourier ptychographic microscopy,” J. Biomed. Opt. 22(09), 1 (2017).
[Crossref]

J. Microsc. (1)

J. L. Beverage, R. V. Shack, and M. R. Descour, “Measurement of the three - dimensional microscope point spread function using a Shack-Hartmann wavefront sensor,” J. Microsc. 205(1), 61–75 (2002).
[Crossref]

J. Opt. Soc. Am. A (2)

M. R. Teague, “Deterministic phase retrieval: a Green's function solution,” J. Opt. Soc. Am. A 73(11), 1434–1441 (1983).
[Crossref]

R. G. Paxman, T. J. Schulz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9(7), 1072–1085 (1992).
[Crossref]

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17(5), S573–S577 (2001).
[Crossref]

Microelectron. Reliab. (1)

D. L. Barton, K. Bernhard-Höfer, and E. I. Cole, “FLIP-chip and “backside” techniques,” Microelectron. Reliab. 39(6-7), 721–730 (1999).
[Crossref]

Mineral. Mag. (1)

E. Pirard, “Multispectral imaging of ore minerals in optical microscopy,” Mineral. Mag. 68(2), 323–333 (2004).
[Crossref]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref]

R. Horstmeyer, R. Heintzmann, G. Popescu, L. Waller, and C. Yang, “Standardizing the resolution claims for coherent microscopy,” Nat. Photonics 10(2), 68–71 (2016).
[Crossref]

Opt. Commun. (1)

A. Pan, M. Zhou, Y. Zhang, J. Min, M. Lei, and B. Yao, “Adaptive-window angular spectrum algorithm for near-field ptychography,” Opt. Commun. 430, 73–82 (2019).
[Crossref]

Opt. Express (16)

X. Ou, G. Zheng, and C. Yang, “Embedded pupil function recovery for Fourier ptychographic microscopy,” Opt. Express 22(5), 4960–4972 (2014).
[Crossref]

L. H. Yeh, J. Dong, J. Zhong, L. Tian, M. Chen, G. Tang, M. Soltanolkotabi, and L. Waller, “Experimental robustness of Fourier ptychography phase retrieval algorithms,” Opt. Express 23(26), 33214–33240 (2015).
[Crossref]

L. Waller, M. Tsang, S. Ponda, S. Y. Yang, and G. Barbastathis, “Phase and amplitude imaging from noisy images by Kalman filtering,” Opt. Express 19(3), 2805–2814 (2011).
[Crossref]

A. Pan and B. Yao, “Three-dimensional space optimization for near-field ptychography,” Opt. Express 27(4), 5433–5446 (2019).
[Crossref]

C. Zuo, J. Sun, and Q. Chen, “Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy,” Opt. Express 24(18), 20724–20744 (2016).
[Crossref]

R. Horstmeyer, X. Ou, J. Chung, G. Zheng, and C. Yang, “Overlapped Fourier coding for optical aberration removal,” Opt. Express 22(20), 24062–24080 (2014).
[Crossref]

G. Zheng, X. Ou, R. Horstmeyer, and C. Yang, “Characterization of spatially varying aberrations for wide field-of-view microscopy,” Opt. Express 21(13), 15131–15143 (2013).
[Crossref]

C. Zuo, Q. Chen, Y. Yu, and A. Asundi, “Transport-of-intensity phase imaging using Savitzky-Golay differentiation filter–theory and applications,” Opt. Express 21(5), 5346–5362 (2013).
[Crossref]

C. Zuo, Q. Chen, W. Qu, and A. Asundi, “High-speed transport-of-intensity phase microscopy with an electrically tunable lens,” Opt. Express 21(20), 24060–24075 (2013).
[Crossref]

C. Shen, J. Tan, C. Wei, and Z. Liu, “Coherent diffraction imaging by moving a lens,” Opt. Express 24(15), 16520–16529 (2016).
[Crossref]

C. Shen, X. Bao, J. Tan, S. Liu, and Z. Liu, “Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint,” Opt. Express 25(14), 16235–16249 (2017).
[Crossref]

A. Greenbaum, A. Feizi, N. Akbari, and A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013).
[Crossref]

Y. W. Chu, F. Chen, Y. Tang, T. Chen, Y. X. Yu, H. L. Jin, L. B. Guo, Y. F. Lu, and X. Y. Zeng, “Diagnosis of nasopharyngeal carcinoma from serum samples using hyperspectral imaging combined with a chemometric method,” Opt. Express 26(22), 28661–28671 (2018).
[Crossref]

L. Waller, L. Tian, and G. Barbastathis, “Transport of Intensity phase-amplitude imaging with higher order intensity derivatives,” Opt. Express 18(12), 12552–12561 (2010).
[Crossref]

Y. Lu, T. Bifano, S. Ünlü, and B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013).
[Crossref]

S. Dong, R. Horstmeyer, R. Shiradkar, K. Guo, X. Ou, Z. Bian, H. Xin, and G. Zheng, “Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging,” Opt. Express 22(11), 13586–13599 (2014).
[Crossref]

Opt. Lett. (1)

Optica (3)

Phys. Rev. X (1)

K. Agarwal, R. Chen, L. S. Koh, C. J. R. Sheppard, and X. Chen, “Crossing the resolution limit in near-infrared imaging of silicon chips: targeting 10-nm node technology,” Phys. Rev. X 5(2), 021014 (2015).
[Crossref]

Proc. SPIE (1)

R. A. Gonsalves and R. Chidlaw, “Wavefront sensing by phase retrieval,” Proc. SPIE 207, 32–39 (1979).
[Crossref]

Sci. Transl. Med. (1)

A. Greenbaum, Y. Zhang, A. Feizi, P. L. Chung, W. Luo, S. R. Kandukuri, and A. Ozcan, “Wide-field computational imaging of pathology slides using lens-free on-chip microscopy,” Sci. Transl. Med. 6(267), 267ra175 (2014).
[Crossref]

Other (2)

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems: Vol. 3. Aberration Theory and Correction of Optical Systems (Wiley-Vch, (2007), Chap. 29.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Multispectral, aperture-scanning Fourier ptychographic microscope system design. (a) The experimental setup schematic, switchable between transmission and reflection illumination mode. (b) FPM scanning strategy, where the red dots and thick red lines represent the scanning trajectory. The blue dotted circles represent the NA coverage of each scanning aperture. (c) Spatial position of VIS and NIR camera FOVs on the sample plane. For visualization, the VIS camera FOV is displayed in green and the NIR camera FOV in transparent gray.
Fig. 2.
Fig. 2. Dataflow pipeline of the aberration calibration and correction scheme. (a) Aberration calibration algorithm pipeline based on the microbead sample. It consists of three steps, FPM reconstruction, digital defocusing and Zernike mode fitting. (b) Aberration correction algorithm pipeline. The pupil function at some specific spatial location is compensated as its conjugate in the Fourier domain.
Fig. 3.
Fig. 3. Spatial varying aberration of our multispectral microscope system when the wavelength is 532 nm. (a)-(h) Zernike mode coefficients as function of the spatial coordinate on the sample plane. Each blue-dot data point represents the calculated Zernike coefficient weight from one off-axis bead. ∼70 beads are identified over the entire FOV. These data points are fitted to a 2D surface for each type of aberration.
Fig. 4.
Fig. 4. Spatial varying aberration of our multispectral microscope system for multiple wavelengths. The NIR fitted surface result is based on the beads located in the NIR camera’s FOV, shown by the dash-line box in (a). For comparison, it is extrapolated to the same size as the VIS results. (a)-(d) Astigmatism and coma coefficients as function of the spatial coordinate on the sample plane. Each color represents a single wavelength.
Fig. 5.
Fig. 5. Demonstration of aberration calibration and correction. The Siemens star target was randomly offset from the optical center for different wavelengths. Transmissive (a) and reflective (b) reconstructions before and after correction are compared and the inset boxes zoom in on the sample center to show the resolution enhancement. (c1)-(c4) draws the line profile of a circle segment in the reflective reconstructions before and after correction.
Fig. 6.
Fig. 6. Schematic of the flip-chip and its frontside imaging. (a) Schematic of the flip-chip and its micro-ball bump. (b) Multispectral frontside images of the flip-chip. (c) Comparison between the visible and NIR images in three regions of interest (ROI) marked by the yellow box in (b). (d) Enlargements of the same area from three visible-light channel images, where the results before and after aberration correction are compared, together with the local pupil function for each wavelength.
Fig. 7.
Fig. 7. Backside imaging of the flip-chip. (a) Comparison between the backside raw image under the wavelength of 532 nm and 1552 nm. (b) Line profiles through the periodic structure in (c2) to highlight the aberration correction performance. (c1)-(c3) Comparison between up-sampled raw image, FPM-reconstructed image before aberration compensation and the image after compensation along with their local pupil function.

Tables (1)

Tables Icon

Table 1. Fitted spherical aberration

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I k ( x 1 , y 1 ) = | F 1 { F { o ( x , y ) } P k ( u , v ) } | 2 , k = 1 , 2 , , 47 ,
arg min k = 1 47 | | F 1 { O ( u , v ) P k ( u , v ) } | 2 I k ( x 1 , y 1 ) | 2 .
I t ( x , y ) = | F 1 { F { B ( x , y ) } H t ( u , v ) } | 2 , t = 1 , 2 , , 10.
H t ( u , v ) = exp [ i 2 π λ 0 z t 1 ( λ 0 u ) 2 ( λ 0 v ) 2 ] , t = 1 , 2 , , 10.
P ( u , v ; w 1 , , w 8 ) = exp [ i 2 π j = 1 8 w j Z j ( u , v ) ] ,
arg min t = 1 10 | | F 1 { F { B o n ( x , y ) } P ( u , v ; w 1 , , w 8 ) H t ( u , v ) } | 2 I o f f , t ( x , y ) | 2 .

Metrics