Abstract

Mid-spatial frequency (MSF) errors challenge freeform manufacture, not in the least due to tool-misfit. This can compromise the performance of functional surfaces and is difficult to remove by post-processing. Our previously reported work on an effective process-chain for aluminum polishing demonstrated the ability to remove MSFs by hard-tool grolishing. In this paper, we describe MSF removal on an aluminum mirror, deformed to a saddle-like freeform shape, using power spectral density (PSD) as a diagnostic. CNC Precessions bonnet polishing was optimized to minimize output MSFs, then a non-Newtonian (n-N) tool was used to attenuate the residual MSFs that were present. Our approach was distinct from the approach pioneered by University of Arizona, in that we adopted small-tool polishing on the saddle-like part, with removal rate restored by rotating the n-N tool. In order to define the optimum window of rotation speeds, the dynamic behavior of the n-N material was explored by modelling and experiments. The tool was deployed on an industrial robot, and we describe a novel ‘hyper-crossing’ tool-path with wide sweeping paths, which is the logical opposite of the unicursal zero-crossing paths we have previously reported. This new path has proved ideally suited to robots, given their high velocity/acceleration capabilities. Detailed results are presented from the PSD viewpoint.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies

David Walker, Wu Hsing-Yu, Guoyu Yu, Hongyu Li, Wang Zhang, and Chunlian Lu
Appl. Opt. 56(36) 9925-9931 (2017)

Fiber-based tools: material removal and mid-spatial frequency error reduction

Hossein Shahinian, Mohammed Hassan, Harish Cherukuri, and Brigid A. Mullany
Appl. Opt. 56(29) 8266-8274 (2017)

Pseudo-random tool paths for CNC sub-aperture polishing and other applications

Christina R. Dunn and David D. Walker
Opt. Express 16(23) 18942-18949 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
    [Crossref]
  2. Q. Meng, H. Wang, W. Liang, Z. Yan, and B. Wang, “Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view,” Appl. Opt. 58(3), 609–615 (2019).
    [Crossref] [PubMed]
  3. Q. Meng, H. Wang, K. Wang, Y. Wang, Z. Ji, and D. Wang, “Off-axis three-mirror freeform telescope with a large linear field of view based on an integration mirror,” Appl. Opt. 55(32), 8962–8970 (2016).
    [Crossref] [PubMed]
  4. O. Fähnle, D. W. Kim, and R. Williamson, “Special Section Guest Editorial: Freeform Optics,” Opt. Eng. 55(7), 071201 (2016).
    [Crossref]
  5. D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
    [Crossref]
  6. K. Liang and M. A. Alonso, “Understanding the effects of groove structures on the MTF,” Opt. Express 25(16), 18827–18841 (2017).
    [Crossref] [PubMed]
  7. J. M. Tamkin and T. D. Milster, “Effects of structured mid-spatial frequency surface errors on image performance,” Appl. Opt. 49(33), 6522–6536 (2010).
    [Crossref] [PubMed]
  8. K. G. Carrigan, “Visible Quality Aluminum and Nickel Superpolish Polishing Technology Enabling New Missions,” Proc. SPIE 8012, 80123f (2011).
    [Crossref]
  9. K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
    [Crossref]
  10. D. Vukobratovich and J. P. Schaefer, “Large Stable Aluminum Optics for Aerospace Applications,” Proc. SPIE 8125, 81250t (2011).
  11. Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
    [Crossref]
  12. J. A. Shultz, M. A. Davies, and T. J. Suleski, “Effects of MSF errors on performance of freeform optics: Comparison of diamond turning and diamond milling,” in Imaging and Applied Optics 2015 (Optical Society of America, 2015), paper FT4B.3.
  13. K. G. Carrigan, “Manufacturing Status of Tinsley Visible Quality Bare Aluminum and an Example of Snap Together Assembly,” Proc. SPIE 8353, 83532D (2012).
  14. X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
    [Crossref]
  15. T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).
  16. D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).
  17. H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).
  18. D. W. Kim and J. H. Burge, “Rigid conformal polishing tool using non-linear visco-elastic effect,” Opt. Express 18(3), 2242–2257 (2010).
    [Crossref] [PubMed]
  19. X. Zheng, Mid-spatial Frequency Control for Automated Functional Surface Processing. Doctoral thesis, University of Huddersfield, (2018).
  20. C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
    [Crossref] [PubMed]
  21. C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
    [Crossref]

2019 (3)

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Q. Meng, H. Wang, W. Liang, Z. Yan, and B. Wang, “Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view,” Appl. Opt. 58(3), 609–615 (2019).
[Crossref] [PubMed]

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

2018 (2)

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

2017 (2)

2016 (2)

2015 (2)

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

2014 (1)

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

2012 (1)

K. G. Carrigan, “Manufacturing Status of Tinsley Visible Quality Bare Aluminum and an Example of Snap Together Assembly,” Proc. SPIE 8353, 83532D (2012).

2011 (2)

D. Vukobratovich and J. P. Schaefer, “Large Stable Aluminum Optics for Aerospace Applications,” Proc. SPIE 8125, 81250t (2011).

K. G. Carrigan, “Visible Quality Aluminum and Nickel Superpolish Polishing Technology Enabling New Missions,” Proc. SPIE 8012, 80123f (2011).
[Crossref]

2010 (2)

2008 (2)

C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
[Crossref] [PubMed]

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Alonso, M. A.

Barros, C.

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Beaucamp, A. T.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Bibby, M.

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Blalock, T.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).

Burge, J. H.

Carrigan, K. G.

K. G. Carrigan, “Manufacturing Status of Tinsley Visible Quality Bare Aluminum and an Example of Snap Together Assembly,” Proc. SPIE 8353, 83532D (2012).

K. G. Carrigan, “Visible Quality Aluminum and Nickel Superpolish Polishing Technology Enabling New Missions,” Proc. SPIE 8012, 80123f (2011).
[Crossref]

Choi, H.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

Dunn, C.

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Dunn, C. R.

Fähnle, O.

O. Fähnle, D. W. Kim, and R. Williamson, “Special Section Guest Editorial: Freeform Optics,” Opt. Eng. 55(7), 071201 (2016).
[Crossref]

Guo, X.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

Hsing-Yu, W.

Ji, Z.

Kim, D. W.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

O. Fähnle, D. W. Kim, and R. Williamson, “Special Section Guest Editorial: Freeform Optics,” Opt. Eng. 55(7), 071201 (2016).
[Crossref]

D. W. Kim and J. H. Burge, “Rigid conformal polishing tool using non-linear visco-elastic effect,” Opt. Express 18(3), 2242–2257 (2010).
[Crossref] [PubMed]

Kim, G.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

Lesiak, S.

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Li, H.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Li, T.

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

Liang, K.

Liang, W.

Lin, C.

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

Liu, Q.

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

Liu, Z.

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

Lu, C.

D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Ma, L.

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

Medicus, K.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).

Meng, Q.

Milster, T. D.

Moeggenborg, K. J.

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Myer, B. W.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Naguib, N.

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Namba, Y.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Nelson, J. D.

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).

Palmer, M.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

Reggie, S.

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

Reynolds, C.

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

Schaefer, J. P.

D. Vukobratovich and J. P. Schaefer, “Large Stable Aluminum Optics for Aerospace Applications,” Proc. SPIE 8125, 81250t (2011).

Shu, Y.

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

Tamkin, J. M.

Vukobratovich, D.

D. Vukobratovich and J. P. Schaefer, “Large Stable Aluminum Optics for Aerospace Applications,” Proc. SPIE 8125, 81250t (2011).

Walker, D. D.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

C. R. Dunn and D. D. Walker, “Pseudo-random tool paths for CNC sub-aperture polishing and other applications,” Opt. Express 16(23), 18942–18949 (2008).
[Crossref] [PubMed]

Wang, B.

Wang, D.

Wang, H.

Wang, K.

Wang, Y.

Williamson, R.

O. Fähnle, D. W. Kim, and R. Williamson, “Special Section Guest Editorial: Freeform Optics,” Opt. Eng. 55(7), 071201 (2016).
[Crossref]

Wu, H.

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Wu, L.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Yan, Z.

Yu, G.

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Zhang, W.

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

D. D. Walker, W. Hsing-Yu, G. Yu, H. Li, W. Zhang, and C. Lu, “Insight into aspheric misfit with hard tools: mapping the island of low mid-spatial frequencies,” Appl. Opt. 56(36), 9925–9931 (2017).
[Crossref]

Zheng, X.

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

Zhou, X.

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

Appl. Opt. (4)

Mon. Not. R. Astron. Soc. (1)

D. D. Walker, G. Yu, H. Li, B. W. Myer, A. T. Beaucamp, Y. Namba, and L. Wu, “Title advances in optical fabrication for astronomy,” Mon. Not. R. Astron. Soc. 485(2), 2071–2082 (2019).
[Crossref]

Opt. Eng. (3)

Q. Liu, X. Zhou, Z. Liu, C. Lin, and L. Ma, “Long-stroke fast tool servo and a tool setting method for freeform optics fabrication,” Opt. Eng. 53(9), 092005 (2014).
[Crossref]

X. Guo, Y. Shu, G. Kim, M. Palmer, H. Choi, and D. W. Kim, “Pseudorandom orbiting stroke for freedom optics postprocessing,” Opt. Eng. 58, 092608 (2019).
[Crossref]

O. Fähnle, D. W. Kim, and R. Williamson, “Special Section Guest Editorial: Freeform Optics,” Opt. Eng. 55(7), 071201 (2016).
[Crossref]

Opt. Express (3)

Proc. SPIE (8)

C. Reynolds, D. D. Walker, G. Yu, and H. Li, “A novel hyper-crossing tool path generation algorithm for sub-aperture polishing,” Proc. SPIE 10706, 107060F (2018).
[Crossref]

K. G. Carrigan, “Visible Quality Aluminum and Nickel Superpolish Polishing Technology Enabling New Missions,” Proc. SPIE 8012, 80123f (2011).
[Crossref]

K. J. Moeggenborg, C. Barros, S. Lesiak, N. Naguib, and S. Reggie, “Low-scatter bare aluminum optics via chemical mechanical polishing,” Proc. SPIE 7060, 706002 (2008).
[Crossref]

D. Vukobratovich and J. P. Schaefer, “Large Stable Aluminum Optics for Aerospace Applications,” Proc. SPIE 8125, 81250t (2011).

T. Blalock, K. Medicus, and J. D. Nelson, “Fabrication of freeform optics,” Proc. SPIE 9575, 95750H (2015).

D. D. Walker, C. Dunn, G. Yu, M. Bibby, X. Zheng, H. Wu, H. Li, and C. Lu, “The role of robotics in computer controlled polishing of large and small optics,” Proc. SPIE 9575, 95750B (2015).

H. Li, D. D. Walker, X. Zheng, G. Yu, C. Reynolds, W. Zhang, and T. Li, “Advanced techniques for robotic polishing of aluminum mirrors,” Proc. SPIE 10692, 106920N (2018).

K. G. Carrigan, “Manufacturing Status of Tinsley Visible Quality Bare Aluminum and an Example of Snap Together Assembly,” Proc. SPIE 8353, 83532D (2012).

Other (2)

J. A. Shultz, M. A. Davies, and T. J. Suleski, “Effects of MSF errors on performance of freeform optics: Comparison of diamond turning and diamond milling,” in Imaging and Applied Optics 2015 (Optical Society of America, 2015), paper FT4B.3.

X. Zheng, Mid-spatial Frequency Control for Automated Functional Surface Processing. Doctoral thesis, University of Huddersfield, (2018).

Supplementary Material (1)

NameDescription
» Visualization 1       Video is showing the Non-Newtonian tool driven by ‘hyper-crossing’ tool path on an industrial robot, to polish a saddle like free form aluminum part as described in this paper.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1 Schematic setup to create aluminum freeform.
Fig. 2
Fig. 2 (a) Measuring the aluminum freeform surface, and (b) measurement result.
Fig. 3
Fig. 3 (a) CNC polishing with bonnet tooling, and (b) schematic raster tool path.
Fig. 4
Fig. 4 (a) MSFs measurements using Talysurf Intra Profilometer, and (b) measurement results.
Fig. 5
Fig. 5 PSD analysis after bonnet CNC raster polishing.
Fig. 6
Fig. 6 The Young’s Modulus of the Silly Putty material test setup (a), and results (b).
Fig. 7
Fig. 7 (a) The polish tool design with the Silly Putty material, and (b) implementation on an ABB spindle.
Fig. 8
Fig. 8 n-N material tool FEA model.
Fig. 9
Fig. 9 Misfit of PV 124 µm over 100 mm diameter flat tool.
Fig. 10
Fig. 10 Pressure distribution FEA results with different rotation speeds.
Fig. 11
Fig. 11 2D pressure distribution simulation results.
Fig. 12
Fig. 12 The pressure distribution on the freeform surface with ~2.0 μm misfit on the left, 2D plot on the right.
Fig. 13
Fig. 13 Unicursal random tool path.
Fig. 14
Fig. 14 The epicyclic tool path.
Fig. 15
Fig. 15 Robotic processing setup (Visualization 1).
Fig. 16
Fig. 16 Two patterns of epicyclic tool path.
Fig. 17
Fig. 17 Depth of MSF measurements after robotic polishing.
Fig. 18
Fig. 18 White light interferometer micrograph of texture showing Sa 2.9 nm.
Fig. 19
Fig. 19 PSD analysis after final (2nd) robotic process.
Fig. 20
Fig. 20 PSD analysis at different processing stages.

Tables (2)

Tables Icon

Table 1 Bonnet polishing process parameters

Tables Icon

Table 2 PSD analysis results at different processing stages the freeform part

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

x 2 a 2 y 2 b 2 =2z
Δh(x,y)=kp(x,y)v(x,y)
epicycleX=x+r*cos( t )
epicycleY=y+r*sin( t )

Metrics