Abstract

We demonstrate a method for measuring the transverse chromatic aberration (TCA) in a virtual reality head-mounted display. The method relies on acquiring images of a digital bar pattern and measuring the displacement of different color bars. This procedure was used to characterize the TCAs in the Oculus Go, Oculus Rift, Samsung Gear, and HTC Vive. The results show noticeable TCAs for the Oculus devices for angles larger than 5° from the center of the field of view. TCA is less noticeable in the Vive in part due to off-axis monochromatic aberrations. Finally, user measurements were conducted, which were in excellent agreement with the laboratory results.

Full Article  |  PDF Article
OSA Recommended Articles
Development of an immersive virtual reality head-mounted display with high performance

Yunqi Wang, Weiqi Liu, Xiangxiang Meng, Hanyi Fu, Daliang Zhang, Yusi Kang, Rui Feng, Zhonglun Wei, Xiuqing Zhu, and Guohua Jiang
Appl. Opt. 55(25) 6969-6977 (2016)

Correlation between perception of color, shadows, and surface textures and the realism of a scene in virtual reality

Pedro J. Pardo, María Isabel Suero, and Ángel Luis Pérez
J. Opt. Soc. Am. A 35(4) B130-B135 (2018)

Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality

Mark Draelos, Brenton Keller, Christian Viehland, Oscar M. Carrasco-Zevallos, Anthony Kuo, and Joseph Izatt
Biomed. Opt. Express 9(6) 2825-2843 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Wheatstone, “XVIII. contributions to the physiology of vision. - part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. Roy. Soc. Lond. 128, 371–394 (1838).
    [Crossref]
  2. I. E. Sutherland, “A head-mounted three dimensional display,” in Proceedings of the December 9–11, 1968, fall joint computer conference, part I, (ACM, 1968), pp. 757–764.
  3. D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
    [Crossref]
  4. D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
    [Crossref]
  5. Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
    [Crossref]
  6. S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
    [Crossref] [PubMed]
  7. H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
    [Crossref]
  8. N. Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft Hololens holograms for near infrared fluorescence based image guided surgery,” in Molecular-Guided Surgery: Molecules, Devices, and Applications III, (International Society for Optics and Photonics, 2017), p. 100490I.
  9. M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
    [Crossref] [PubMed]
  10. R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
    [Crossref] [PubMed]
  11. X. Chen and J. Hu, “A review of haptic simulator for oral and maxillofacial surgery based on virtual reality,” Expert. Rev. Med. Devices 15, 435–444 (2018).
    [Crossref] [PubMed]
  12. D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
    [Crossref]
  13. M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
    [Crossref]
  14. J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
    [Crossref]
  15. T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
    [Crossref]
  16. A. S. Pillai and P. S. Mathew, “Impact of virtual reality in healthcare: a review,” in Virtual and Augmented Reality in Mental Health Treatment, (IGI Global, 2019), pp. 17–31.
    [Crossref]
  17. G. S. Ruthenbeck and K. J. Reynolds, “Virtual reality for medical training: the state-of-the-art,” J. Simul. 9, 16–26 (2015).
    [Crossref]
  18. C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
    [Crossref]
  19. F. G. Hamza-Lup, J. P. Rolland, and C. Hughes, “A distributed augmented reality system for medical training and simulation,” arXiv preprint arXiv:1811.12815 (2018).
  20. M. M. North and S. M. North, “Virtual reality therapy,” in Computer-assisted and web-based innovations in psychology, special education, and health, (Elsevier, 2016), pp. 141–156.
    [Crossref]
  21. D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
    [Crossref]
  22. J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).
  23. A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
    [Crossref]
  24. R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
    [Crossref]
  25. J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
    [Crossref]
  26. J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
    [Crossref]
  27. L. Zhang and M. J. Murdoch, “Color matching criteria in augmented reality,” in Color and Imaging Conference, (Society for Imaging Science and Technology, 2018), pp. 102–109.
    [Crossref]
  28. A. Abileah, “30.1: Overview: testing 3d-stereo displays, techniques and challenges,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2013), pp. 368–371.
    [Crossref]
  29. K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
    [Crossref]
  30. K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
    [Crossref]
  31. K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
    [Crossref]
  32. R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
    [Crossref]
  33. R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
    [Crossref]
  34. W. J. Smith, Modern optical engineering (Tata McGraw-Hill Education, 1966).
  35. M. Yanoff and J. S. Duker, Ophthalmology (MOSBY Elsevier, 2009).
  36. S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
    [Crossref] [PubMed]
  37. R. Cagenello, A. Arditi, and D. L. Halpern, “Binocular enhancement of visual acuity,” J. Opt. Soc. Am. A 10, 1841–1848 (1993).
    [Crossref] [PubMed]

2019 (1)

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

2018 (9)

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

X. Chen and J. Hu, “A review of haptic simulator for oral and maxillofacial surgery based on virtual reality,” Expert. Rev. Med. Devices 15, 435–444 (2018).
[Crossref] [PubMed]

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

2017 (2)

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

2016 (1)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

2015 (5)

G. S. Ruthenbeck and K. J. Reynolds, “Virtual reality for medical training: the state-of-the-art,” J. Simul. 9, 16–26 (2015).
[Crossref]

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

2010 (1)

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

1993 (1)

1838 (1)

C. Wheatstone, “XVIII. contributions to the physiology of vision. - part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. Roy. Soc. Lond. 128, 371–394 (1838).
[Crossref]

Abileah, A.

A. Abileah, “30.1: Overview: testing 3d-stereo displays, techniques and challenges,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2013), pp. 368–371.
[Crossref]

Achilefu, S.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Akers, W. J.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Akinduro, O. O.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Ard, T.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Arditi, A.

Austin, R. L.

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Bae, J. H.

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Bodenstedt, S.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Bosc, R.

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

Boynton, P. A.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
[Crossref]

Brown, B. L.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Bydon, M.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Cagenello, R.

Calpito, R. C.

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

Castrillon-Oberndorfer, G.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Chai, G.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Chai, Y. J.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Chen, R. E.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Chen, X.

X. Chen and J. Hu, “A review of haptic simulator for oral and maxillofacial surgery based on virtual reality,” Expert. Rev. Med. Devices 15, 435–444 (2018).
[Crossref] [PubMed]

Cho, M.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Chung, K.-H.

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Cui, N.

N. Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft Hololens holograms for near infrared fluorescence based image guided surgery,” in Molecular-Guided Surgery: Molecules, Devices, and Applications III, (International Society for Optics and Photonics, 2017), p. 100490I.

Cutkosky, M. R.

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Daniel, B. L.

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Dao, T.-H.

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

Denning, B.

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Denning, B. S.

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

Diaz, R. J.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Dillmann, R.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Dohi, T.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Draper, R. S.

R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
[Crossref]

Drews, B.

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Drews, B. C.

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

Duker, J. S.

M. Yanoff and J. S. Duker, Ophthalmology (MOSBY Elsevier, 2009).

Duncan, D.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Fabian, P.

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Fedoriouk, V.

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Fedoriouk, V. B.

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

Fields, R. C.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Fitoussi, A.

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

Folguera, S.

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

Forner, L.

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

Freeman, W. D.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Gacy, L. W.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

Gao, S.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Garner, R.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Gruev, V.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

N. Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft Hololens holograms for near infrared fluorescence based image guided surgery,” in Molecular-Guided Surgery: Molecules, Devices, and Applications III, (International Society for Optics and Photonics, 2017), p. 100490I.

Halpern, D. L.

Hamza-Lup, F. G.

F. G. Hamza-Lup, J. P. Rolland, and C. Hughes, “A distributed augmented reality system for medical training and simulation,” arXiv preprint arXiv:1811.12815 (2018).

Han, P. K.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Heft, E. L.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

Hersant, B.

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

Hoffmann, J.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Hoshi, K.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Hosseinpour, A.-R.

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

Hu, J.

X. Chen and J. Hu, “A review of haptic simulator for oral and maxillofacial surgery based on virtual reality,” Expert. Rev. Med. Devices 15, 435–444 (2018).
[Crossref] [PubMed]

Hughes, C.

F. G. Hamza-Lup, J. P. Rolland, and C. Hughes, “A distributed augmented reality system for medical training and simulation,” arXiv preprint arXiv:1811.12815 (2018).

Hussain, T.

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

Hyodo, K.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Inoguchi, K.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Ishimoto, M.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Iwai, J.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Jenkins, S. A.

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Jiang, T.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Katic, D.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Kerezoudis, P.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Kharel, P.

N. Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft Hololens holograms for near infrared fluorescence based image guided surgery,” in Molecular-Guided Surgery: Molecules, Devices, and Applications III, (International Society for Optics and Photonics, 2017), p. 100490I.

Kim, D.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Kim, E. J.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Kim, H. C.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Komotar, R. J.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Kondo, R.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Kong, H.-J.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Kozakai, T.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Kurashige, M.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Lee, D.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Lee, K. E.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Leibfried, L. V.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

Li, Q.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Liang, K.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Liang, R.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Lianza, T. A.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

Liao, H.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Lin, L.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Lin, M. A.

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Lin, Y.-K.

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Linte, C. A.

T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
[Crossref]

Liu, D.

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Liu, F.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Llena, C.

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

Lundström, L.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Margenthaler, J.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Masamune, K.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Mathew, P. S.

A. S. Pillai and P. S. Mathew, “Impact of virtual reality in healthcare: a review,” in Virtual and Augmented Reality in Mental Health Treatment, (IGI Global, 2019), pp. 17–31.
[Crossref]

Mendez, A.

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

Meningaud, J.-P.

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

Meyer, F. M.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

Mondal, S. B.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Murdoch, M. J.

L. Zhang and M. J. Murdoch, “Color matching criteria in augmented reality,” in Color and Imaging Conference, (Society for Imaging Science and Technology, 2018), pp. 102–109.
[Crossref]

Naruse, K.

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Newman, B.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

North, M. M.

M. M. North and S. M. North, “Virtual reality therapy,” in Computer-assisted and web-based innovations in psychology, special education, and health, (Elsevier, 2016), pp. 141–156.
[Crossref]

North, S. M.

M. M. North and S. M. North, “Virtual reality therapy,” in Computer-assisted and web-based innovations in psychology, special education, and health, (Elsevier, 2016), pp. 141–156.
[Crossref]

Oka, H.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Oshima, K.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Otsuka, K.

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Ouchi, S.

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Pan, J. J.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Penczek, J.

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
[Crossref]

Peters, T. M.

T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
[Crossref]

Pillai, A. S.

A. S. Pillai and P. S. Mathew, “Impact of virtual reality in healthcare: a review,” in Virtual and Augmented Reality in Mental Health Treatment, (IGI Global, 2019), pp. 17–31.
[Crossref]

Pirris, S. M.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Privitera, C.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Quinones-Hinojosa, A.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Raptis, C.

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

Reynolds, K. J.

G. S. Ruthenbeck and K. J. Reynolds, “Virtual reality for medical training: the state-of-the-art,” J. Simul. 9, 16–26 (2015).
[Crossref]

Rodríguez-Lozano, F.

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

Rolland, J. P.

F. G. Hamza-Lup, J. P. Rolland, and C. Hughes, “A distributed augmented reality system for medical training and simulation,” arXiv preprint arXiv:1811.12815 (2018).

Roorda, A.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Russell, W. J.

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Ruthenbeck, G. S.

G. S. Ruthenbeck and K. J. Reynolds, “Virtual reality for medical training: the state-of-the-art,” J. Simul. 9, 16–26 (2015).
[Crossref]

Sabesan, R.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Sanderson, P. M.

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Sano, H.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Saslow, A.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Sato, O.

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Sato, Y.

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Seeberger, R.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Shibahara, Y.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Si, P.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Silva, J.

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

Silva, J. N.

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

Siu, A. F.

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Smith, W. J.

W. J. Smith, Modern optical engineering (Tata McGraw-Hill Education, 1966).

Som, A.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Southworth, M.

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

Speidel, S.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Spengler, P.

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Sudlow, G. P.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Suenaga, H.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Sugawara, M.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Sutherland, I. E.

I. E. Sutherland, “A head-mounted three dimensional display,” in Proceedings of the December 9–11, 1968, fall joint computer conference, part I, (ACM, 1968), pp. 757–764.

Takato, T.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Takenaka, H.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Tiruveedhula, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Toga, A. W.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Totani, T.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

Tran, H. H.

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Tsurutani, K.

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Uehara, S.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Ukai, R.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Unsbo, P.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Vachlin, F.

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Valverde, I.

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

Varshneya, R.

R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
[Crossref]

Vogt, T.

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

Wakemoto, H.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

Wang, I.-C.

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Wang, M. Y.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Wanserski, E.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Wharen, R. E. J.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Wheatstone, C.

C. Wheatstone, “XVIII. contributions to the physiology of vision. - part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. Roy. Soc. Lond. 128, 371–394 (1838).
[Crossref]

Williams, J.

T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
[Crossref]

Winter, S.

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

Xin, Y.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Yamada, M.

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

Yaniv, Z.

T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
[Crossref]

Yanoff, M.

M. Yanoff and J. S. Duker, Ophthalmology (MOSBY Elsevier, 2009).

Yau, H.-T.

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Yi, J. W.

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

Yoon, J. W.

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Zhang, L.

L. Zhang and M. J. Murdoch, “Color matching criteria in augmented reality,” in Color and Imaging Conference, (Society for Imaging Science and Technology, 2018), pp. 102–109.
[Crossref]

Zhang, Y.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Zheng, C.

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Zhu, M.

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Zhu, N.

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

Zrantchev, I.

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

Anesth. Analg. (1)

D. Liu, S. A. Jenkins, P. M. Sanderson, P. Fabian, and W. J. Russell, “Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room,” Anesth. Analg. 110, 1032–1038 (2010).
[Crossref]

Annals Surg. Treat. Res. (1)

D. Lee, H.-J. Kong, D. Kim, J. W. Yi, Y. J. Chai, K. E. Lee, and H. C. Kim, “Preliminary study on application of augmented reality visualization in robotic thyroid surgery,” Annals Surg. Treat. Res. 95, 297–302 (2018).
[Crossref]

BMC Med. Imag. (1)

H. Suenaga, H. H. Tran, H. Liao, K. Masamune, T. Dohi, K. Hoshi, and T. Takato, “Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study,” BMC Med. Imag. 15, 51 (2015).
[Crossref]

Clin. Implant. Dent. Relat. Res. (1)

Y.-K. Lin, H.-T. Yau, I.-C. Wang, C. Zheng, and K.-H. Chung, “A novel dental implant guided surgery based on integration of surgical template and augmented reality,” Clin. Implant. Dent. Relat. Res. 17, 543–553 (2015).
[Crossref]

Eur. Hear. J. (1)

A. Mendez, T. Hussain, A.-R. Hosseinpour, and I. Valverde, “Virtual reality for preoperative planning in large ventricular septal defects,” Eur. Hear. J. 40, 1092 (2018).
[Crossref]

Eur. J. Dental Educ. (1)

C. Llena, S. Folguera, L. Forner, and F. Rodríguez-Lozano, “Implementation of augmented reality in operative dentistry learning,” Eur. J. Dental Educ. 22, e122–e130 (2018).
[Crossref]

Expert. Rev. Med. Devices (1)

X. Chen and J. Hu, “A review of haptic simulator for oral and maxillofacial surgery based on virtual reality,” Expert. Rev. Med. Devices 15, 435–444 (2018).
[Crossref] [PubMed]

IEEE Robot. Autom. Lett. (1)

M. A. Lin, A. F. Siu, J. H. Bae, M. R. Cutkosky, and B. L. Daniel, “Holoneedle: augmented reality guidance system for needle placement investigating the advantages of three-dimensional needle shape reconstruction,” IEEE Robot. Autom. Lett. 3, 4156–4162 (2018).
[Crossref]

Int. J. Comput. Assist. Radiol. Surg. (1)

D. Katić, P. Spengler, S. Bodenstedt, G. Castrillon-Oberndorfer, R. Seeberger, J. Hoffmann, R. Dillmann, and S. Speidel, “A system for context-aware intraoperative augmented reality in dental implant surgery,” Int. J. Comput. Assist. Radiol. Surg. 10, 101–108 (2015).
[Crossref]

Int. J. Med. Robot. Comput. Assist. Surg. (1)

J. W. Yoon, R. E. Chen, E. J. Kim, O. O. Akinduro, P. Kerezoudis, P. K. Han, P. Si, W. D. Freeman, R. J. Diaz, R. J. Komotar, S. M. Pirris, B. L. Brown, M. Bydon, M. Y. Wang, R. E. J. Wharen, and A. Quinones-Hinojosa, “Augmented reality for the surgeon: systematic review,” Int. J. Med. Robot. Comput. Assist. Surg. 14, e1914 (2018).
[Crossref]

Int. J. Oral Maxillofac. Surg. (1)

R. Bosc, A. Fitoussi, B. Hersant, T.-H. Dao, and J.-P. Meningaud, “Intraoperative augmented reality with heads-up displays in maxillofacial surgery: a systematic review of the literature and a classification of relevant technologies,” Int. J. Oral Maxillofac. Surg. 48, 132–139 (2018).
[Crossref] [PubMed]

J. Digit. Imag. (1)

D. Duncan, R. Garner, I. Zrantchev, T. Ard, B. Newman, A. Saslow, E. Wanserski, and A. W. Toga, “Using virtual reality to improve performance and user experience in manual correction of MRI segmentation errors by non-experts,” J. Digit. Imag. 32, 97–104 (2019).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Simul. (1)

G. S. Ruthenbeck and K. J. Reynolds, “Virtual reality for medical training: the state-of-the-art,” J. Simul. 9, 16–26 (2015).
[Crossref]

J. Soc. for Inf. Disp. (2)

R. L. Austin, B. S. Denning, B. C. Drews, V. B. Fedoriouk, and R. C. Calpito, “Qualified viewing space determination of near-eye and head-up displays,” J. Soc. for Inf. Disp. 26, 567–575 (2018).
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “Absolute radiometric and photometric measurements of near-eye displays,” J. Soc. for Inf. Disp. 25, 215–221 (2017).
[Crossref]

J. Vis. (1)

S. Winter, R. Sabesan, P. Tiruveedhula, C. Privitera, P. Unsbo, L. Lundström, and A. Roorda, “Transverse chromatic aberration across the visual field of the human eye,” J. Vis. 16(14), 9 (2016).
[Crossref] [PubMed]

JACC: Basic to Transl. Sci. (1)

J. N. Silva, M. Southworth, C. Raptis, and J. Silva, “Emerging applications of virtual reality in cardiovascular medicine,” JACC: Basic to Transl. Sci. 3, 420–430 (2018).

Philos. Trans. Roy. Soc. Lond. (1)

C. Wheatstone, “XVIII. contributions to the physiology of vision. - part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. Roy. Soc. Lond. 128, 371–394 (1838).
[Crossref]

Sci. Rep. (2)

S. B. Mondal, S. Gao, N. Zhu, G. P. Sudlow, K. Liang, A. Som, W. J. Akers, R. C. Fields, J. Margenthaler, R. Liang, V. Gruev, and S. Achilefu, “Binocular goggle augmented imaging and navigation system provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping,” Sci. Rep. 5, 12117 (2015).
[Crossref] [PubMed]

M. Zhu, F. Liu, G. Chai, J. J. Pan, T. Jiang, L. Lin, Y. Xin, Y. Zhang, and Q. Li, “A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery,” Sci. Rep. 7, 42365 (2017).
[Crossref] [PubMed]

Other (16)

T. M. Peters, C. A. Linte, Z. Yaniv, and J. Williams, Mixed and augmented reality in medicine (CRC, 2018).
[Crossref]

A. S. Pillai and P. S. Mathew, “Impact of virtual reality in healthcare: a review,” in Virtual and Augmented Reality in Mental Health Treatment, (IGI Global, 2019), pp. 17–31.
[Crossref]

N. Cui, P. Kharel, and V. Gruev, “Augmented reality with Microsoft Hololens holograms for near infrared fluorescence based image guided surgery,” in Molecular-Guided Surgery: Molecules, Devices, and Applications III, (International Society for Optics and Photonics, 2017), p. 100490I.

I. E. Sutherland, “A head-mounted three dimensional display,” in Proceedings of the December 9–11, 1968, fall joint computer conference, part I, (ACM, 1968), pp. 757–764.

F. G. Hamza-Lup, J. P. Rolland, and C. Hughes, “A distributed augmented reality system for medical training and simulation,” arXiv preprint arXiv:1811.12815 (2018).

M. M. North and S. M. North, “Virtual reality therapy,” in Computer-assisted and web-based innovations in psychology, special education, and health, (Elsevier, 2016), pp. 141–156.
[Crossref]

W. J. Smith, Modern optical engineering (Tata McGraw-Hill Education, 1966).

M. Yanoff and J. S. Duker, Ophthalmology (MOSBY Elsevier, 2009).

R. L. Austin, B. Drews, T. Vogt, V. Fedoriouk, B. Denning, and F. Vachlin, “65-3: Spectroradiometric measurements of near-eye and head up displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 958–960.
[Crossref]

J. Penczek, P. A. Boynton, F. M. Meyer, E. L. Heft, R. L. Austin, T. A. Lianza, L. V. Leibfried, and L. W. Gacy, “65-1: Distinguished paper: photometric and colorimetric measurements of near-eye displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 950–953.
[Crossref]

L. Zhang and M. J. Murdoch, “Color matching criteria in augmented reality,” in Color and Imaging Conference, (Society for Imaging Science and Technology, 2018), pp. 102–109.
[Crossref]

A. Abileah, “30.1: Overview: testing 3d-stereo displays, techniques and challenges,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2013), pp. 368–371.
[Crossref]

K. Oshima, K. Naruse, K. Tsurutani, J. Iwai, T. Totani, S. Uehara, S. Ouchi, Y. Shibahara, H. Takenaka, Y. Sato, T. Kozakai, M. Kurashige, and H. Wakemoto, “79-3: Eyewear display measurement method: entrance pupil size dependence in measurement equipment,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2016), pp. 1064–1067.
[Crossref]

K. Tsurutani, K. Naruse, K. Oshima, S. Uehara, Y. Sato, K. Inoguchi, K. Otsuka, H. Wakemoto, M. Kurashige, O. Sato, M. Cho, S. Ouchi, and H. Oka, “65-2: Optical attachment to measure both eye-box/FOV characteristics for AR/VR eyewear displays,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2017), pp. 954–957.
[Crossref]

K. Oshima, H. Sano, S. Uehara, H. Oka, M. Ishimoto, M. Sugawara, Y. Sato, M. Kurashige, K. Tsurutani, K. Hyodo, M. Yamada, R. Kondo, K. Inoguchi, H. Wakemoto, M. Cho, R. Ukai, and S. Ouchi, “P-83: Evaluation scheme for transparent properties of AR see-through eyewear display,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 1499–1502.
[Crossref]

R. S. Draper, J. Penczek, R. Varshneya, and P. A. Boynton, “72-2: Standardizing fundamental criteria for near eye display optical measurements: determining eye point position,” in SID Symposium Digest of Technical Papers, (Wiley Online Library, 2018), pp. 961–964.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Sketch of a VR HMD without (top panel) and with (bottom panel) TCA where the different colors of white light focus to different locations on the retina. (b) Image of TCA on the Oculus Rift. Red and blue bars are separate in the center of the FOV. The bars overlap at the edge of the FOV due to TCA. The white arrow with the labeled edge is at a visual angle of 15°
Fig. 2
Fig. 2 (a) Sketch of the experimental setup to characterize a VR HMD. Light from the VR HMD passes through an iris and is focused onto an RGB camera using a 25 mm focal length lens. The XYZ translation stages were used to center the camera in the eyebox of the HMD. (b) Photograph of setup. (c) Test pattern for characterizing TCA. (d) Image of test pattern from c on the Oculus Rift. White lines designate placement of profile used for plots in Fig. 3(a).
Fig. 3
Fig. 3 (a) Plots of profile across the red, green, and blue bars along the white lines in Fig. 2(d). (b) Offset in the positions of the bars relative to the expected positions from the designed pattern, where Δx is the deviation from the expected position of the bars from the input test pattern. Solid lines are fits using Δx = a1x3 + a2,λx for the distortion and TCA of the HMD. (c) Offset in the positions of the bars relative to the expected positions from the designed pattern using a conventional LCD display.
Fig. 4
Fig. 4 TCA in the horizontal and vertical directions for the (a),(b) Oculus Rift (c),(d) Oculus Go (e),(f) Samsung Gear (g),(h) HTC Vive, respectively. A positive (negative) value for TCA indicates a shift towards the nasal (temporal) visual field. As a reference, the results of the test pattern using a conventional display are shown in (a) using red and blue dashed lines.
Fig. 5
Fig. 5 (a) Measured TCA percentages for five users on the Rift for the red and blue bars at a visual angle of 30°. The results from Table 1 for the horizontal direction on the Rift are plotted for comparison. Inset: Depiction of the user task to measure TCA. The blue and red bars are shifted by the user until alignment with the green bars as indicated by the white arrows. (b) Psychophysics tests for the five users at different visual angles with the individual results (dots), blue user averages (blue triangles), red user averages (red squares), and laboratory measurements (dashed lines). The error bars are ± 1 standard deviation.

Tables (1)

Tables Icon

Table 1 TCA for VR HMDs

Metrics