Abstract

We describe a technique that allows the improvement of the resolution of optical microscopes for nanofiber measurements beyond the diffraction limit. It can be readily implemented on any microscope. We demonstrated it by measuring tapered fibers radii from 0.4 to 4 µm with a resolution below the diffraction limit, from a few nanometers up to 50 nm in the worst case, depending on the radii. This technique is a non-contact measurement with the microscope objective placed a few centimeters from the nanofiber. We acquire the experimental diffraction pattern by scanning the object plane of the microscope system, upstream and downstream the nanofiber. We compare this experimental diffraction pattern to a bank of all the simulated patterns for all the radii. The radius of the simulated diffraction pattern that best matches to the experimental one is the sought radius.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy

Florian Warken and Harald Giessen
Opt. Lett. 29(15) 1727-1729 (2004)

Far-field fluorescence microscopy beyond the diffraction limit

A. M. van Oijen, J. Köhler, J. Schmidt, M. Müller, and G. J. Brakenhoff
J. Opt. Soc. Am. A 16(4) 909-915 (1999)

Far-field photothermal microscopy beyond the diffraction limit

Vladimir P. Zharov
Opt. Lett. 28(15) 1314-1316 (2003)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [Crossref]
  2. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref]
  3. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  4. R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
    [Crossref]
  5. A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express 20(18), 19893–19904 (2012).
    [Crossref]
  6. S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Opt. Express 18(4), 3426–3437 (2010).
    [Crossref]
  7. S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
    [Crossref]
  8. S. Leon-Saval, T. Birks, W. Wadsworth, P. S. J. Russell, and M. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12(13), 2864–2869 (2004).
    [Crossref]
  9. V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
    [Crossref]
  10. M. I. M. Abdul Khudus, F. De Lucia, C. Corbari, T. Lee, P. Horak, P. Sazio, and G. Brambilla, “Phase matched parametric amplification via four-wave mixing in optical microfibers,” Opt. Lett. 41(4), 761–764 (2016).
    [Crossref]
  11. Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
    [Crossref]
  12. J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
    [Crossref]
  13. L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
    [Crossref]
  14. L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
    [Crossref]
  15. K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
    [Crossref]
  16. D. Türke, J. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B: Lasers Opt. 92(2), 159–163 (2008).
    [Crossref]
  17. L. Cui, X. Li, C. Guo, Y. H. Li, Z. Y. Xu, L. J. Wang, and W. Fang, “Generation of correlated photon pairs in micro/nano-fibers,” Opt. Lett. 38(23), 5063–5066 (2013).
    [Crossref]
  18. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
    [Crossref]
  19. R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
    [Crossref]
  20. G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
    [Crossref]
  21. J. Laegsgaard, “Theory of surface second-harmonic generation in silica nanowires,” J. Opt. Soc. Am. B 27(7), 1317–1324 (2010).
    [Crossref]
  22. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and J. W. Nicholson, “Probing optical microfiber nonuniformities at nanoscale,” Opt. Lett. 31(16), 2393–2395 (2006).
    [Crossref]
  23. J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolston, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2(5), 416–423 (2015).
    [Crossref]
  24. Y.-H. Lai, K. Y. Yang, M.-G. Suh, and K. J. Vahala, “Fiber taper characterization by optical backscattering reflectometry,” Opt. Express 25(19), 22312–22327 (2017).
    [Crossref]
  25. J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
    [Crossref]
  26. M. Zhu, Y.-T. Wang, Y.-Z. Sun, L. Zhang, and W. Ding, “Diameter measurement of optical nanofiber based on high-order Bragg reflections using a ruled grating,” Opt. Lett. 43(3), 559–562 (2018).
    [Crossref]
  27. F. Warken and H. Giessen, “Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,” Opt. Lett. 29(15), 1727–1729 (2004).
    [Crossref]
  28. U. Wiedemann, K. Karapetyan, C. Dan, D. Pritzkau, W. Alt, S. Irsen, and D. Meschede, “Measurement of submicrometre diameters of tapered optical fibres using harmonic generation,” Opt. Express 18(8), 7693–7704 (2010).
    [Crossref]
  29. Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
    [Crossref]
  30. A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
    [Crossref]
  31. L. Shan, Stimulated Raman scattering in the evanescent field of nanofibers (Université Paris Sud, 2012).
  32. C. Baker and M. Rochette, “A generalized heat-brush approach for precise control of the waist profile in fiber tapers,” Opt. Mater. Express 1(6), 1065–1076 (2011).
    [Crossref]
  33. H. C. Van de Hulst, Light scattering by small particles (Dover Publications, 1981).
  34. I. H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  35. A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

2018 (1)

2017 (3)

2016 (1)

2015 (3)

2014 (2)

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

2013 (4)

L. Cui, X. Li, C. Guo, Y. H. Li, Z. Y. Xu, L. J. Wang, and W. Fang, “Generation of correlated photon pairs in micro/nano-fibers,” Opt. Lett. 38(23), 5063–5066 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

S. Ravets, J. E. Hoffman, P. R. Kordell, J. D. Wong-Campos, S. L. Rolston, and L. A. Orozco, “Intermodal energy transfer in a tapered optical fiber: optimizing transmission,” J. Opt. Soc. Am. A 30(11), 2361–2371 (2013).
[Crossref]

2012 (2)

A. Felipe, G. Espíndola, H. J. Kalinowski, J. A. S. Lima, and A. S. Paterno, “Stepwise fabrication of arbitrary fiber optic tapers,” Opt. Express 20(18), 19893–19904 (2012).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

2011 (1)

2010 (3)

2008 (1)

D. Türke, J. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B: Lasers Opt. 92(2), 159–163 (2008).
[Crossref]

2007 (2)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

2006 (1)

2004 (3)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

2002 (1)

K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

1991 (1)

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

1965 (1)

Abdul Khudus, M. I. M.

Abedin, K. S.

K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Alt, W.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Azzoune, A.

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Baker, C.

Beadie, G.

Beugnot, J.-C.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Birks, T.

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Brambilla, G.

Corbari, C.

Cui, L.

Dan, C.

De Lucia, F.

Ding, W.

Divay, L.

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Dulashko, Y.

Espíndola, G.

Fang, W.

Fatemi, F. K.

Feinberg, J.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Felipe, A.

Fini, J. M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Giessen, H.

Godet, A.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Gopinath, J. T.

K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Grubsky, V.

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Guo, C.

Hakuta, K.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Hale, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Hoffman, J. E.

Horak, P.

Huy, K. P.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Ippen, E. P.

K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Irsen, S.

Kalinowski, H. J.

Karapetyan, K.

Keloth, J.

Kenny, R. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Kordell, P. R.

Laegsgaard, J.

Lai, Y.-H.

Larat, C.

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Lebrun, S.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Lee, T.

Leon-Saval, S.

Li, X.

Li, Y. H.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Li, Z.

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
[Crossref]

Lima, J. A. S.

Lou, J.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Malitson, I. H.

Mason, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Meschede, D.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Nayak, K. P.

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

Ndao, A.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Nicholson, J. W.

Oakley, K. P.

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

Orozco, L. A.

Paterno, A. S.

Pauliat, G.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Pecheur, V.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Pricking, S.

Pritzkau, D.

Ravets, S.

Rochette, M.

Rolston, S. L.

Russell, P. S. J.

Sadgrove, M.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

Sazio, P.

Shan, L.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

L. Shan, Stimulated Raman scattering in the evanescent field of nanofibers (Université Paris Sud, 2012).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Suh, M.-G.

Sumetsky, M.

Sun, Y.-Z.

Sylvestre, T.

A. Godet, A. Ndao, T. Sylvestre, V. Pecheur, S. Lebrun, G. Pauliat, J.-C. Beugnot, and K. P. Huy, “Brillouin spectroscopy of optical microfibers and nanofibers,” Optica 4(10), 1232–1238 (2017).
[Crossref]

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Teipel, J.

D. Türke, J. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B: Lasers Opt. 92(2), 159–163 (2008).
[Crossref]

Tong, L.

Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
[Crossref]

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
[Crossref]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Türke, D.

D. Türke, J. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B: Lasers Opt. 92(2), 159–163 (2008).
[Crossref]

Vahala, K. J.

Van de Hulst, H. C.

H. C. Van de Hulst, Light scattering by small particles (Dover Publications, 1981).

Vienne, G.

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

Wadsworth, W.

Wang, L. J.

Wang, Y.

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
[Crossref]

Wang, Y.-T.

Warken, F.

Wiedemann, U.

Wong-Campos, J. D.

Xu, F.

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

Xu, Y.

Y. Xu, W. Fang, and L. Tong, “Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision,” Opt. Express 25(9), 10434–10440 (2017).
[Crossref]

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
[Crossref]

Xu, Z. Y.

Yalla, R.

J. Keloth, M. Sadgrove, R. Yalla, and K. Hakuta, “Diameter measurement of optical nanofibers using a composite photonic crystal cavity,” Opt. Lett. 40(17), 4122–4125 (2015).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

Yang, K. Y.

Zhang, L.

M. Zhu, Y.-T. Wang, Y.-Z. Sun, L. Zhang, and W. Ding, “Diameter measurement of optical nanofiber based on high-order Bragg reflections using a ruled grating,” Opt. Lett. 43(3), 559–562 (2018).
[Crossref]

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
[Crossref]

Zhu, M.

Appl. Phys. B: Lasers Opt. (1)

D. Türke, J. Teipel, and H. Giessen, “Manipulation of supercontinuum generation by stimulated cascaded four-wave mixing in tapered fibers,” Appl. Phys. B: Lasers Opt. 92(2), 159–163 (2008).
[Crossref]

Appl. Phys. Lett. (2)

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Stimulated Raman scattering in the evanescent field of liquid immersed tapered nanofibers,” Appl. Phys. Lett. 102(20), 201110 (2013).
[Crossref]

K. S. Abedin, J. T. Gopinath, and E. P. Ippen, “Highly nondegenerate femtosecond four-wave mixing in tapered microstructure fiber,” Appl. Phys. Lett. 81(8), 1384–1386 (2002).
[Crossref]

Electron. Lett. (2)

G. Brambilla and F. Xu, “Adiabatic submicrometric tapers for optical tweezers,” Electron. Lett. 43(4), 204–205 (2007).
[Crossref]

R. P. Kenny, T. A. Birks, and K. P. Oakley, “Control of optical fibre taper shape,” Electron. Lett. 27(18), 1654–1656 (1991).
[Crossref]

J. Eur. Opt. Soc. (1)

L. Shan, G. Pauliat, G. Vienne, L. Tong, and S. Lebrun, “Design of nanofibres for efficient stimulated Raman scattering in the evanescent field,” J. Eur. Opt. Soc. 8, 13030 (2013).
[Crossref]

J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[Crossref]

Opt. Commun. (1)

V. Grubsky and J. Feinberg, “Phase-matched third-harmonic UV generation using low-order modes in a glass micro-fiber,” Opt. Commun. 274(2), 447–450 (2007).
[Crossref]

Opt. Express (7)

Opt. Lett. (6)

Opt. Mater. Express (1)

Optica (2)

Phys. Rev. Lett. (2)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett. 109(6), 063602 (2012).
[Crossref]

R. Yalla, M. Sadgrove, K. P. Nayak, and K. Hakuta, “Cavity quantum electrodynamics on a nanofiber using a composite photonic crystal cavity,” Phys. Rev. Lett. 113(14), 143601 (2014).
[Crossref]

Sensors (2)

Z. Li, Y. Xu, W. Fang, L. Tong, and L. Zhang, “Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip,” Sensors 15(3), 4890–4898 (2015).
[Crossref]

J. Lou, Y. Wang, and L. Tong, “Microfiber optical sensors: a review,” Sensors 14(4), 5823–5844 (2014).
[Crossref]

Other (3)

L. Shan, Stimulated Raman scattering in the evanescent field of nanofibers (Université Paris Sud, 2012).

H. C. Van de Hulst, Light scattering by small particles (Dover Publications, 1981).

A. Azzoune, J.-C. Beugnot, L. Divay, A. Godet, C. Larat, S. Lebrun, A. Ndao, G. Pauliat, V. Pecheur, K. P. Huy, and T. Sylvestre, “Optical and opto-acoustical metrology of silica tapered fibers for nonlinear applications,” in 2017 OPJ-OSA Joint Symposia on Nanophotonics and Digital Photonics, (Optical Society of America, 2017), paper PL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Photograph of the pulling rig; the dashed red line represents the nanofiber.
Fig. 2.
Fig. 2. Left: Scheme of the microscope and its illuminating system; the nanofiber is perpendicular to this figure, along y-axis; its center corresponds to point 0, the origin of system (x, y, z). Right: Illustration of the procedure used to reconstruct the experimental diffraction pattern Iexp (x, y0, z + δz0) starting from a series of camera acquisitions Image (z + δz0) (see text).
Fig. 3.
Fig. 3. Patterns simulation procedure; red dashed circle represents the nanofiber. (a) Total intensity for a nanofiber whose radius is a = 1 µm, calculated using Eq. (1) and Eq. (3); for z < a: ripples on the incident plane wave originating from light back-reflected by the nanofiber. (b) Intensity captured by the camera, take a field at z0 = a: propagation by plane wave decomposition limited by microscope aperture (0.42); for z < a: plane wave seen through the nanofiber.
Fig. 4.
Fig. 4. Simulated diffraction patterns. (a) a = 0.2 µm. (b) a = 0.3 µm. (c) a = 0.4 µm. (d) a = 0.5 µm. (e) a = 1.0 µm. (f) a = 1.5 µm.
Fig. 5.
Fig. 5. Weighting coefficients |am| of gallery modes TM0mG excited inside the nanofiber; the inserts represent the total intensity inside and surrounding the nanofiber for radii corresponding to the resonance of the TM04G, TM010G and TM020G gallery modes.
Fig. 6.
Fig. 6. Simultaneous determination of fiber focus position and radius. (a) Experimental diffraction pattern. (b) Image distances between the experimental diffraction pattern and the set of diffraction patterns calculated for all the radii and shift δz; best matching for a = 0.451 µm and δz = 2 µm. (c) Simulated diffraction pattern for a visual verification.
Fig. 7.
Fig. 7. SEM measurement of the same nanofiber measured in Fig. 6 with our technique.
Fig. 8.
Fig. 8. Fiber profiles measured by this technique.
Fig. 9.
Fig. 9. Zoom on the fiber profiles shown in Fig. 7 with two simulated ones including or neglecting the fiber movement. The horizontal grey lines correspond to the radii of resonances of the gallery modes (Fig. 5). The y offsets between the different curves is chosen for clarity and is not relevant, except for the two simulated curves that were modelled starting from the same nanofiber profile.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( r , θ ) = m = + i m exp ( i m θ ) [ J m ( k r ) b m H m ( k r ) ] ,
b m = n J m ( n k a ) J m ( k a ) J m ( n k a ) J m ( k a ) n J m ( n k a ) H m ( k a ) J m ( n k a ) H m ( k a ) ,
E ( r , θ ) = 2 π k r m = + i m + 1 exp ( i m θ ) a m J m ( n k r ) = m = 1 M a m T M 0 m G ,
a m = 1 n J m ( n k a ) H m ( k a ) J m ( n k a ) H m ( k a ) ,
E ( r ) p = P p = P c p exp ( i k p . r ) ,
c p ( y 0 , z 0 ) Δ x + Δ x E ( r 0 ) exp ( i k p . r 0 ) d x .
k p = { k sin [ α ( p ) ] , 0 , k cos [ α ( p ) ] } ,
D i s t ( a , δ z ) = p [ I e x p , p ( δ z ) P a t p ( a ) ] 2 ,
Δ y 2 N A Δ z ,

Metrics