Abstract

Surface texturing is one of the main techniques to enhance light absorption in solar cells. In thin film devices, periodic texturing can be used to excite the guided resonances supported by the structure. Therefore, total absorption is enhanced largely due to the excitation of these resonances. Although the maximum absorption enhancement limit in both bulk and photonic structures is known already, the weight of each resonance type in this limit is not yet clear. In this contribution, we extend the temporal couple-mode theory, deriving a closed formula to distinguish the contribution of Fabry-Perot and wave-guided modes within the absorption limit for 1-D grating structures. Secondly, using this analytical approach, we can clearly address cases of bulk and thin absorber thicknesses. Our results, supported by rigorous electromagnetic calculation, show that absorption enhancement in a 1-D grating structure can be much higher than the nano-photonic limit (2πn) reported by Yu et al. Thirdly, beyond the framework put forward by Yu et al., we extended our theory to describe the absorption enhancement in double side textured slabs. We have found that when the periods of top and bottom gratings are aliquant, absorption is enhanced in a wider frequency range. We provide rigorous numerical calculations to support our theoretical approach.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers

H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman
Opt. Express 26(18) A737-A749 (2018)

Optimization-based design of surface textures for thin-film Si solar cells

Xing Sheng, Steven G. Johnson, Jurgen Michel, and Lionel C. Kimerling
Opt. Express 19(S4) A841-A850 (2011)

Fundamental limit of light trapping in grating structures

Zongfu Yu, Aaswath Raman, and Shanhui Fan
Opt. Express 18(S3) A366-A380 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Reinders, P. Verlinden, W. Sark, and A. Freundlich, Photovoltaic Solar Energy: From Fundamentals to Applications, (John Wiley & Sons, Ltd, 2017).
  2. M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).
  3. L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).
  4. T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
    [Crossref]
  5. H. M. Lee, S. W. Ahn, S. E. Lee, and J. H. Choi, Silicon thin film technology applications for low cost and high efficiency photovoltaics, in: Technical Digest of the21st International Photovoltaic Science and Engineering Conference (PVSEC-21), 4A–2I-01, Fukuoka, Japan, 2011.
  6. B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
    [Crossref]
  7. K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
    [Crossref]
  8. H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
    [Crossref]
  9. A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
    [Crossref]
  10. K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).
  11. C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
    [Crossref]
  12. D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
    [Crossref]
  13. S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
    [Crossref]
  14. T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
    [Crossref]
  15. A. Soteris, Kalogirou, McEvoy's, Handbook of Photovoltaics, 439–472 (Academic University, 2018).
  16. V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
    [Crossref]
  17. P. Yeh and N. Yeh, “Dsign and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators,” Renew. Energy 120, 1–13 (2018).
    [Crossref]
  18. A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
    [Crossref]
  19. M. A. Green, SolarCells: Operating Principles, Technology, and System Applications, (Prentice Hall, 1981).
  20. J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
    [Crossref]
  21. T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
    [Crossref]
  22. S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
    [Crossref]
  23. M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
    [Crossref] [PubMed]
  24. J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
    [Crossref]
  25. B. Ralf, Wehrspohn, A. G., Uwe Rau, Ed. Photon Management in Solar Cells, pp 120, (Wiley-VCH Verlag GmbH Co. KGaA, 2015).
  26. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
    [Crossref] [PubMed]
  27. H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
    [Crossref]
  28. H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).
  29. S. C. Stefano, Diffractive optics for thin-film silicon solar cells. (Springer, 2016).
  30. E. Yablonovitch, “Statistical ray optics,” Journal of the Optical Society of America 72, 899–907, (1982).
  31. J. H. Lambert, Photometria, sive de mensura et gradibus luminis, colorum et umbrae (W.Engelmann, Leipzig, 1892)
  32. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics 62, 243–249, (1987).
  33. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices29, 300–305, (1982).
  34. Eugene Hecht, Optics (Addison-Wesley, 1998)
  35. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proceedings of the National Academy of Sciences of the United States of America 107, 17491 6 (2010).
  36. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(Suppl 3), A366–A380 (2010).
    [PubMed]
  37. A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
    [Crossref]
  38. F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
    [Crossref]
  39. H. R. Stuart and D. G. Hall, “Thermodynamic limit to light trapping in thin planar structures,” J. Opt. Soc. Am. A 14(11), 3001–3008 (1997).
    [Crossref]
  40. C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
    [Crossref]
  41. F. J. Haug and C. Ballif, “Light management in thin film silicon solar cells,” Energy Environ. Sci. 8(3), 824–837 (2015).
    [Crossref]
  42. Charles Kittel, Introduction to Solid State Physics, seventh edition, (Wiley, New York, 1995).
  43. H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman, “Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers,” Opt. Express 26(18), A737–A749 (2018).
    [Crossref] [PubMed]
  44. M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
    [Crossref]
  45. O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
    [Crossref]
  46. W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
    [Crossref]

2019 (1)

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

2018 (3)

P. Yeh and N. Yeh, “Dsign and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators,” Renew. Energy 120, 1–13 (2018).
[Crossref]

H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman, “Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers,” Opt. Express 26(18), A737–A749 (2018).
[Crossref] [PubMed]

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

2016 (2)

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

2015 (3)

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

F. J. Haug and C. Ballif, “Light management in thin film silicon solar cells,” Energy Environ. Sci. 8(3), 824–837 (2015).
[Crossref]

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

2013 (1)

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

2012 (3)

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

2011 (2)

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

2010 (4)

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt. Express 18(S3Suppl 3), A308–A313 (2010).
[Crossref] [PubMed]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(Suppl 3), A366–A380 (2010).
[PubMed]

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

2009 (1)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

2008 (3)

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

2006 (2)

J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
[Crossref]

T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
[Crossref]

1997 (1)

1995 (1)

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

1987 (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics 62, 243–249, (1987).

1983 (2)

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).

1982 (1)

E. Yablonovitch, “Statistical ray optics,” Journal of the Optical Society of America 72, 899–907, (1982).

1981 (1)

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Agert, C.

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Ahmadpanahi, H.

Aiken, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Alexander, D. T.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Andreani, L. C.

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

Bailat, J.

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Ballif, C.

F. J. Haug and C. Ballif, “Light management in thin film silicon solar cells,” Energy Environ. Sci. 8(3), 824–837 (2015).
[Crossref]

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Barnett, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Battaglia, C.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Billet, A.

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Biron, R.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Boccard, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

Boriskina, S. V.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Bortz, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Bothe, K.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Bowden, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Bozzola, A.

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

Braginsky, L.

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Branham, M. S.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Brendel, R.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Buehlmann, P.

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Buelow, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Bugnon, G.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Campbell, P.

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics 62, 243–249, (1987).

Cantoni, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Carlson, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Chang, C. H.

Chang, F. Y.

Charrière, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Chen, G.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Chiu, M. Y.

Christensen, E.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Cody, G. D.

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices29, 300–305, (1982).

Cui, Y.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Das, C.

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

Davenport, T.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Deckman, H.

H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).

Deckman, H. W.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

Despeisse, M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Ding, L.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Dominé, D.

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Doolittle, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Dorodnyy, A.

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Dunsmuir, J.

H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).

Emery, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Escarré, J.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

Fan, S.

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(Suppl 3), A366–A380 (2010).
[PubMed]

Faÿ, S.

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

Feltrin, A.

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Ferguson, I.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Finger, F.

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

Fujibayashi, T.

T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
[Crossref]

Fujiwara, H.

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

Goossen, K.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Gray, A.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Gray, J.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Green, M. A.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics 62, 243–249, (1987).

Guha, S.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Hafner, C.

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Hall, D. G.

Haug, F. J.

F. J. Haug and C. Ballif, “Light management in thin film silicon solar cells,” Energy Environ. Sci. 8(3), 824–837 (2015).
[Crossref]

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Haug, F.-J.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Herzig, H. P.

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

Honsberg, C.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Hsu, C. M.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Hsu, W. C.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Huang, Y.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Hüpkes, J.

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

Isabella, O.

H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman, “Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers,” Opt. Express 26(18), A737–A749 (2018).
[Crossref] [PubMed]

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).

Jäger, K.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).

Jani, O.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Jia, H.

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Jiang, C.-S.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Juilfs, M.

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Kasashima, S.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Kazmerski, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Keevers, M. J.

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Kiamilev, F.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Kirkpatrick, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Kobayashi, T.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Koida, T.

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

Konagai, M.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Kondo, M.

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
[Crossref]

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Kowalczewski, P.

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

Krc, J.

J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
[Crossref]

Kröger, I.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Kurtz, S.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Lambertz, A.

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

Leuthold, J.

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Lim, S.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Linssen, D. N. P.

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

Liscidini, M.

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

MacDonald, D.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Matsui, T.

T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
[Crossref]

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Meillaud, F.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Mizuno, K.

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Moore, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Nakada, T.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Naqavi, A.

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Nguyen, H. T.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Nicolay, S.

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

Pahud, C.

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

Peest, P. C.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Raman, A.

Ravekes, R. E.

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Redorici, L.

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

Reetz, W.

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

Sakai, S.

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Sakaki, H.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Salzman, D.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Scharf, T.

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

Schinke, C.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Schirmacher, A.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Schmidt, G.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Schmidt, J.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Schwartz, R.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Sekiguchi, Y.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Shatz, N.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Shklover, V.

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Sichanugrist, P.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Sinae, K.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Sivec, L.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Smole, F.

J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
[Crossref]

Söderström, K.

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

Solntsev, S.

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).

Steenhoff, V.

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Steiner, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Steinhauser, J.

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

Stuart, H. R.

Sun, D. C.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Takacs, L.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Takahashi, F.

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

Takeuchi, Y.

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Tanoue, T.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Tong, J. K.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Topic, M.

J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
[Crossref]

Tsai, M. A.

Tsuruga, S.

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

Unger, B.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Vac, J.

H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).

Vehse, M.

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Vismara, R.

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman, “Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers,” Opt. Express 26(18), A737–A749 (2018).
[Crossref] [PubMed]

Vogt, M. R.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Wang, K. X.

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

Wanlass, M.

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

Winter, S.

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Witzke, H.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

Wronski, C. R.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

Yablonovitch, E.

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

E. Yablonovitch, “Statistical ray optics,” Journal of the Optical Society of America 72, 899–907, (1982).

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices29, 300–305, (1982).

Yan, B.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Yang, J.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Yeh, N.

P. Yeh and N. Yeh, “Dsign and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators,” Renew. Energy 120, 1–13 (2018).
[Crossref]

Yeh, P.

P. Yeh and N. Yeh, “Dsign and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators,” Renew. Energy 120, 1–13 (2018).
[Crossref]

Yerci, S.

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Yokoyama, K.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Yu, P.

Yu, Z.

Yue, G.

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

Yukimoto, Y.

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Zeman, M.

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

H. Ahmadpanahi, R. Vismara, O. Isabella, and M. Zeman, “Distinguishing Fabry-Perot from guided resonances in thin periodically-textured silicon absorbers,” Opt. Express 26(18), A737–A749 (2018).
[Crossref] [PubMed]

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).

ACS Nano (1)

C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano 6(3), 2790–2797 (2012).
[Crossref] [PubMed]

Advances in Physics: X (1)

L. C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, and L. Redorici,“Silicon solar cells: toward the efficiency limits,” Advances in Physics: X,  4(1), 1548305 (2019).

AIP Adv. (1)

C. Schinke, P. C. Peest, J. Schmidt, R. Brendel, K. Bothe, M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim, H. T. Nguyen, and D. MacDonald, “Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon,” AIP Adv. 5(6), 067168 (2015).
[Crossref]

Appl. Phys. Express (1)

T. Koida, H. Fujiwara, and M. Kondo, “Reduction of optical loss in hydrogenated amorphous silicon/crystalline silicon heterojunction solar cells by high- mobility hydrogen-doped In2O3 transparent conductive oxide,” Appl. Phys. Express 1, 041501 (2008).
[Crossref]

Appl. Phys. Lett. (5)

C. Das, A. Lambertz, J. Hüpkes, W. Reetz, and F. Finger, “A constructive combination of antireflection and intermediate-reflector layers for a-Si/μc-Si thin film solar cells,” Appl. Phys. Lett. 92(5), 053509 (2008).
[Crossref]

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, and C.-S. Jiang, “Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell,” Appl. Phys. Lett. 99(11), 113512 (2011).
[Crossref]

H. W. Deckman, C. R. Wronski, H. Witzke, and E. Yablonovitch, “Optically enhanced amorphous silicon solar cells,” Appl. Phys. Lett. 42(11), 968–970 (1983).
[Crossref]

T. Fujibayashi, T. Matsui, and M. Kondo, “Improvement in quantum efficiency of thin film Si solar cells due to the suppression of optical reflectance at transparent conducting oxide/Si interface by TiO2/ZnO antireflection coating,” Appl. Phys. Lett. 88(18), 183508 (2006).
[Crossref]

A. Naqavi, F. J. Haug, C. Ballif, T. Scharf, and H. P. Herzig, “Limit of light coupling strength in solar cells,” Appl. Phys. Lett. 102(13), 131113 (2013).
[Crossref]

Energy Environ. Sci. (1)

F. J. Haug and C. Ballif, “Light management in thin film silicon solar cells,” Energy Environ. Sci. 8(3), 824–837 (2015).
[Crossref]

J. Appl. Phys. (2)

K. Söderström, G. Bugnon, R. Biron, C. Pahud, F. Meillaud, F.-J. Haug, and C. Ballif, “Thin-film silicon triple-junction solar cell with12.5% stable efficiency on innovative flat light-scattering substrate,” J. Appl. Phys. 112(11), 114503 (2012).
[Crossref]

F.-J. Haug, K. Söderström, A. Naqavi, and C. Ballif, “Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture,” J. Appl. Phys. 109(8), 084516 (2011).
[Crossref]

J. Non-Cryst. Solids (1)

J. Krč, F. Smole, and M. Topič, “Advanced optical design of tandem micromorph silicon solar cells,” J. Non-Cryst. Solids 352(9-20), 1892–1895 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Journal of Applied Physics (1)

P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” Journal of Applied Physics 62, 243–249, (1987).

Journal of the Optical Society of America (1)

E. Yablonovitch, “Statistical ray optics,” Journal of the Optical Society of America 72, 899–907, (1982).

Jpn. J. Appl. Phys. (1)

H. Sakaki, T. Tanoue, K. Yokoyama, D. C. Sun, Y. Sekiguchi, and Y. Yukimoto, “Design and performances of a triple (GaAs, Si, and Ge)-solar-cell system with multi-layered spectrum splitters,” Jpn. J. Appl. Phys. 20(S2), 127–133 (1981).
[Crossref]

Nano Energy (1)

V. Steenhoff, M. Juilfs, R. E. Ravekes, M. Vehse, and C. Agert, “Resonant-cavity-enhanced a-Ge:H nanoabsorber solar cells for application in multijunction devices,” Nano Energy 27, 658–663 (2016).
[Crossref]

Opt. Commun. (1)

W. C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377, 52–58 (2016).
[Crossref]

Opt. Express (3)

Phys. Status Solidi Rapid Res. Lett. (1)

D. Dominé, P. Buehlmann, J. Bailat, A. Billet, A. Feltrin, and C. Ballif, “Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector,” Phys. Status Solidi Rapid Res. Lett. 2(4), 163–165 (2008).
[Crossref]

Prog. Photovolt. Res. Appl. (3)

A. Barnett, D. Kirkpatrick, C. Honsberg, D. Moore, M. Wanlass, K. Emery, R. Schwartz, D. Carlson, S. Bowden, D. Aiken, A. Gray, S. Kurtz, L. Kazmerski, M. Steiner, J. Gray, T. Davenport, R. Buelow, L. Takacs, N. Shatz, J. Bortz, O. Jani, K. Goossen, F. Kiamilev, A. Doolittle, I. Ferguson, B. Unger, G. Schmidt, E. Christensen, and D. Salzman, “Very high efficiency solar cell modules,” Prog. Photovolt. Res. Appl. 17(1), 75–83 (2009).
[Crossref]

S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Prog. Photovolt. Res. Appl. 18(3), 195–203 (2010).
[Crossref]

M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K,” Prog. Photovolt. Res. Appl. 3(3), 189–192 (1995).
[Crossref]

Renew. Energy (1)

P. Yeh and N. Yeh, “Dsign and analysis of solar-tracking 2D Fresnel lens-based two staged, spectrum-splitting solar concentrators,” Renew. Energy 120, 1–13 (2018).
[Crossref]

Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom (1)

H. Deckman, J. Dunsmuir, and J. Vac, “Applications of surface textures produced with natural lithography,” Sci. Technol., B: Microelectron. Nanometer Struct. – Process., Meas,” Phenom 1, 1109–1112 (1983).

Sol. Energy (1)

O. Isabella, R. Vismara, D. N. P. Linssen, K. X. Wang, S. Fan, and M. Zeman, “Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells,” Sol. Energy 162, 344–356 (2018).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

J. Escarré, K. Söderström, M. Despeisse, S. Nicolay, C. Battaglia, G. Bugnon, L. Ding, F. Meillaud, F.-J. Haug, and C. Ballif, “Geometric light trapping for high efficiency thin film silicon solarcells,” Sol. Energy Mater. Sol. Cells 98, 185–190 (2012).
[Crossref]

A. Dorodnyy, V. Shklover, L. Braginsky, C. Hafner, and J. Leuthold, “High-efficiency spectrum splitting for solar photovoltaics,” Sol. Energy Mater. Sol. Cells 136, 120–126 (2015).
[Crossref]

Thin Solid Films (1)

S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, “Polycrystalline ZnO:B grown by LPCVD as TCO for thin film silicon solar cells,” Thin Solid Films 518(11), 2961–2966 (2010).
[Crossref]

Other (14)

A. Soteris, Kalogirou, McEvoy's, Handbook of Photovoltaics, 439–472 (Academic University, 2018).

M. A. Green, SolarCells: Operating Principles, Technology, and System Applications, (Prentice Hall, 1981).

K. Sinae, F. Takahashi, S. Kasashima, P. Sichanugrist, T. Kobayashi, T. Nakada, and M. Konagai, Development of thin-film solar cells using solar spectrum splitting technique, in: 38th IEEE Photovoltaic Specialists Conference (PVSC), 1209–1211 (2012).

T. Matsui, H. Jia, M. Kondo, K. Mizuno, S. Tsuruga, S. Sakai, and Y. Takeuchi, “Application of microcrystalline Si1xGex infrared absorbers in triple junction solar cells, in: 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010, 311–316.
[Crossref]

H. M. Lee, S. W. Ahn, S. E. Lee, and J. H. Choi, Silicon thin film technology applications for low cost and high efficiency photovoltaics, in: Technical Digest of the21st International Photovoltaic Science and Engineering Conference (PVSEC-21), 4A–2I-01, Fukuoka, Japan, 2011.

A. Reinders, P. Verlinden, W. Sark, and A. Freundlich, Photovoltaic Solar Energy: From Fundamentals to Applications, (John Wiley & Sons, Ltd, 2017).

M. Zeman, O. Isabella, S. Solntsev, and K. Jäger, “Modelling of thin-film silicon solar cells,” Solar Energy Materials and Solar Cells119 (2013).

B. Ralf, Wehrspohn, A. G., Uwe Rau, Ed. Photon Management in Solar Cells, pp 120, (Wiley-VCH Verlag GmbH Co. KGaA, 2015).

S. C. Stefano, Diffractive optics for thin-film silicon solar cells. (Springer, 2016).

J. H. Lambert, Photometria, sive de mensura et gradibus luminis, colorum et umbrae (W.Engelmann, Leipzig, 1892)

Charles Kittel, Introduction to Solid State Physics, seventh edition, (Wiley, New York, 1995).

E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Transactions on Electron Devices29, 300–305, (1982).

Eugene Hecht, Optics (Addison-Wesley, 1998)

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proceedings of the National Academy of Sciences of the United States of America 107, 17491 6 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Light scattering in a Si-based periodically textured structure with thickness d and period of L. The two regions, marked I and II, represent the first (Ti) and second (T’i) scattering of the incident plane wave inside the structure, respectively. The structure is placed on a flat silver. First and second scattering both occur at Si-air interface
Fig. 2
Fig. 2 Resonances (black dots) in a waveguide endowed with a 1-D grating with period L. The grey region represents the maximum area (in reciprocal k–space) that can be occupied by all second diffraction orders in the frequency range [0, ω]. θ = arcsin(2kG/k) is the angle showing the direction of the k vector inside the material, when pointing at the highest second order resonance.
Fig. 3
Fig. 3 (A) Schematic presentation of an overly thick structure with asymmetric grating. (B) Absorption enhancement achievable in a thick Si film with 1-D asymmetric periodic texturing (d = 1 mm). The maximum enhancement achieved by the guided and FP resonances are shown by dashed grey and solid blue lines, respectively. Their sum results in the total enhancement (black line). The red curve represents the maximum enhancement factor calculated by Yu et al. (C) represents the WFP for the structure shown in (A).
Fig. 4
Fig. 4 (A) Schematic presentation of a thick structure with a symmetric grating. (B) Absorption enhancement in a thick Si slab with thickness-to-period ratio L/ ( nd ) =1.5× 10 4 ( d=1 mm) endowed with a symmetric grating. (C) represents the WFP for the structure shown in (A).
Fig. 5
Fig. 5 (A) Schematic presentation of a 1000-nm thick Si film endowed with asymmetric grating. (B) Shows the absorption enhancement in the structure shown in (A). Dashed grey and solid blue lines represent the enhancement due to guided and FP resonances, respectively, while the solid black curve is their sum. The red line is the limit calculated by Yu et al. for an asymmetric grating structure. (C) represents the WFP for the structure shown in (A).
Fig. 6
Fig. 6 (A) Schematic presentation of a 1000-nm thick Si film endowed with symmetric grating. (B) Shows the absorption enhancement in the structure shown in (A). Dashed grey and solid blue lines represent the enhancement due to guided and FP resonances, respectively, while the solid black curve is their sum. The red line is the limit calculated by Yu et al. for a symmetric grating structure. (C) represents the WFP for the structure shown in (A).
Fig. 7
Fig. 7 (A) shows one period of a 1 μm thick Si slab endowed with a symmetric grating. The grating has a period of 600 nm, duty cycle 50% and height of 20 nm. The structure is excited using normal incidence plane wave. The electric field inside the Si slab is calculated using COMSOL multyphysics. (B) Shows the absorption enhancement in the structure shown in (A), total absorption at each wavelength is divided by the one pass absorption [43] at corresponding wavelength, to calculate the enhancement. Absorption enhancement for each grating order is also presented in different color.
Fig. 8
Fig. 8 (A) shows one period of a 1-μm thick Si slab endowed with an asymmetric grating. The grating has a period of 600 nm, duty cycle 50% and height of 20 nm. The structure is excited using normal incidence plane wave. The electric field inside the Si slab is calculated using COMSOL multyphysics. (B) Shows the absorption enhancement in the structure shown in (A), total absorption at each wavelength is divided by the one pass absorption [43] at corresponding wavelength, to calculate the enhancement. Absorption enhancement for each grating order is also presented in different color.
Fig. 9
Fig. 9 Light scattering in a double side periodically textured Si-based slab. The periods of top and bottom gratings are indicated as Ltop and Lbot respectively. The structure has a thickness d. The first and second scattering of the incident plane wave inside the structure, is indicated by Ti and T’I respectively. The structure is placed on a grating made of a perfectly reflecting metal. Here, second scattering occurs at the Si-metal interface.
Fig. 10
Fig. 10 (A) schematically shows a 1-μm thick slab endowed with symmetric grating on two interfaces. The scale of top and bottom grating is exaggerated only for purpose of visualization; (B) reports the absorption enhancement from top (blue) and bottom (red) symmetric gratings in a 1000-nm thick Si film. The ration for Ltop / Lbot is equal to 0.909. Total enhancement is shown in black line.
Fig. 11
Fig. 11 (A) Schematically shows a 1-μm thick slab endowed with asymmetric grating on two interfaces. The scale of top and bottom grating is exaggerated only for purpose of visualization; (B) reports the absorption enhancement from top (blue) and bottom (red) asymmetric gratings in a 1000-nm thick Si film. The ration for Ltop / Lbot is equal to 0.909. Total enhancement is shown in black line.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

F= 2π γ i αdΔω M N
k ( p,q ) =n ω ( p,q ) c = ( p 2π d ) 2 + ( q 2π L ) 2 { p=±1,±2,...± q=0,±1,...±
M=Pψ d dω ( area of circle with radius k= ωn/c area of a resonance )Δω=... ...=Pψ2π n 2 ω c 2 ( L 2π )( d 2π )Δω
M q =4ψ n 2 s c ( ns ) 2 q 2 d 2π Δω
M FP = d dω ( 2 k k d )=2 n k d c Δω
F q =4ψ ns ( ns ) 2 q 2 1 2.ψ. s +1
F FP = 2 2ψ s +1
F TOT = F FP + q=1 q= F q
W FP = F FP F Total
s max = lim q n q n
M double =2π n 2 ω c 2 ( ψ top L top 2π + ψ bot L bot 2π )( d 2π )Δω
M t,b =4 n 2 c d 2π ( ψ top s t ( n s t ) 2 q t 2 + ψ bot s b ( n s b ) 2 q b 2 )Δω
F t,b = 4n 2 ψ top s t +1 ( ψ top s t ( n s t ) 2 q t 2 + ψ bot s b ( n s b ) 2 q b 2 )

Metrics