Abstract

We study the second-order coherence function of a plasmonic nanoantenna fed by near-field of a single-photon source incoherently pumped in the continuous wave regime. We consider the case of a strong Purcell effect, when the single-photon source radiates almost entirely in the mode of a nanoantenna. We show that when the energy of thermal fluctuations, kT, of the nanoantenna is much smaller than the interaction energy between the electromagnetic field of the nanoantenna mode and the single-photon source, ΩR, the statistics of the emission is close to that of thermal radiation. In the opposite limit, ΩR>>kT, the nanoantenna radiates single photons. In the last case, we demonstrate the possibility of overcoming the radiation intensity of an individual single-photon source. This result opens the possibility of creating a high-intensity single-photon source.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Solid-state single photon sources: the nanowire antenna

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard
Opt. Express 17(4) 2095-2110 (2009)

Second-order coherence properties of amplified spontaneous emission

Iliya V. Doronin, Evgeny S. Andrianov, Alexander A. Zyablovsky, Alexander A. Pukhov, Yurii E. Lozovik, Alexey P. Vinogradov, and Alexander A. Lisyansky
Opt. Express 27(8) 10991-11005 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Quantum Cryptography Technology Experts Panel, “A Quantum Information Science and Technology Roadmap: Part 2: Quantum Technology,” (Advanced Research and Development Activity, 2004).
  2. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  3. J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
    [Crossref] [PubMed]
  4. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
    [Crossref]
  5. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  6. S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
    [Crossref] [PubMed]
  7. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
    [Crossref]
  8. M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
    [Crossref]
  9. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
    [Crossref] [PubMed]
  10. I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
    [Crossref]
  11. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
    [Crossref] [PubMed]
  12. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
    [Crossref] [PubMed]
  13. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
    [Crossref] [PubMed]
  14. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. Lett. 69, 681 (1946).
  15. A. Bennett, D. Unitt, P. Atkinson, D. Ritchie, and A. Shields, “High performance single photon sources from photolithographically defined pillar microcavities,” Opt. Express 13(1), 50–55 (2005).
    [Crossref] [PubMed]
  16. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
    [Crossref]
  17. A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
    [Crossref] [PubMed]
  18. S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced Raman scattering,” Nanophotonics 8, 429 (2018).
  19. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Theoretical and Mathematical Physics) (Springer, 2003).
  20. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge university Press, 1997).
  21. P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).
  22. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [Crossref] [PubMed]
  23. S. K. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
    [Crossref]
  24. T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
    [Crossref] [PubMed]
  25. H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
    [Crossref] [PubMed]
  26. R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
    [Crossref] [PubMed]
  27. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
    [Crossref] [PubMed]
  28. L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
    [Crossref]
  29. K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
    [Crossref] [PubMed]
  30. H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
    [Crossref] [PubMed]
  31. S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
    [Crossref] [PubMed]
  32. S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
    [Crossref] [PubMed]
  33. B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
    [Crossref]
  34. P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
    [Crossref]
  35. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).
  36. V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
    [Crossref]
  37. B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46(7), 4306–4322 (1992).
    [Crossref] [PubMed]
  38. W. Vogel and D.-G. Welsch, Quantum Optics (John Wiley & Sons, 2006).
  39. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
    [Crossref]
  40. H.-P. Breuer and F. Petruccione, The theory of Open Quantum Systems (Oxford University Press on Demand, 2002).
  41. E. B. Davies, “Quantum Theory of Open Systems,” (Academic Press, 1976).
  42. R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy (Basel) 15(12), 2100–2128 (2013).
    [Crossref]
  43. H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer Science & Business Media, 2009).
  44. V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
    [Crossref] [PubMed]
  45. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
    [Crossref] [PubMed]
  46. I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
    [Crossref]
  47. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
    [Crossref]
  48. M. Hillery, “Physics. Quantum walks through a waveguide maze,” Science 329(5998), 1477–1478 (2010).
    [Crossref] [PubMed]
  49. S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
    [Crossref]

2018 (7)

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced Raman scattering,” Nanophotonics 8, 429 (2018).

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

2017 (4)

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
[Crossref] [PubMed]

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

2016 (6)

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

S. K. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
[Crossref]

2015 (3)

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

2014 (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

2013 (2)

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy (Basel) 15(12), 2100–2128 (2013).
[Crossref]

2012 (3)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

2011 (3)

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

2010 (2)

M. Hillery, “Physics. Quantum walks through a waveguide maze,” Science 329(5998), 1477–1478 (2010).
[Crossref] [PubMed]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

2009 (2)

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

2007 (4)

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

2005 (1)

1992 (1)

B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46(7), 4306–4322 (1992).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. Lett. 69, 681 (1946).

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Aharonovich, I.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

Alton, D. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Andersen, S. K.

Andrianov, E.

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

Andrianov, E. S.

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

Aoki, T.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

Atkinson, P.

Baburin, A. S.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Baranov, D. G.

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Barnett, S. M.

B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46(7), 4306–4322 (1992).
[Crossref] [PubMed]

Beausoleil, R. G.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

Bedu, F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Begou, T.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Belov, P. A.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Bennett, A.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Benson, O.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Berthelot, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bidault, S.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bogdanov, S. I.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Boltasseva, A.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

Bonod, N.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Bozhevolnyi, S. I.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
[Crossref] [PubMed]

S. K. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
[Crossref]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Buck, M. R.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Buckley, S.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Castelletto, S.

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Cataliotti, F. S.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Chen, O.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Chen, X.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Chen, X.-W.

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Chiang, C.-C.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Christiansen, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Covre da Silva, S. F.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Dayan, B.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

Dey, S.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Dutschke, A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Dutton, Z.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Englund, D.

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Faraon, A.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Fu, K.-M. C.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Fuchs, C. A.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Fujiwara, H.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

García-Parajó, M. F.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Götzinger, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Greentree, A.

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Gruhler, N.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Guha, S.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Hartschuh, A.

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Hillery, M.

M. Hillery, “Physics. Quantum walks through a waveguide maze,” Science 329(5998), 1477–1478 (2010).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

Hoffmann, B.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Hollingsworth, J. A.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Huang, H.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Huttner, B.

B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46(7), 4306–4322 (1992).
[Crossref] [PubMed]

Jenkins, J. A.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Johansson, G.

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Jöns, K. D.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Käll, M.

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Kewes, G.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Kildishev, A. V.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Kimble, H. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Kivshar, Y. S.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Korlacki, R.

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

Kosloff, R.

R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy (Basel) 15(12), 2100–2128 (2013).
[Crossref]

Krasnok, A. E.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Kriz, D.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Krovi, H.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Kumar, S.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
[Crossref] [PubMed]

S. K. Andersen, S. Kumar, and S. I. Bozhevolnyi, “Coupling of nitrogen-vacancy centers in a nanodiamond to a silver nanocube,” Opt. Mater. Express 6(11), 3394–3406 (2016).
[Crossref]

Lagutchev, A. S.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Lettner, T.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Lisyansky, A. A.

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

Liu, H.-W.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Lombardi, P.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Lumeau, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Maslovski, S. I.

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced Raman scattering,” Nanophotonics 8, 429 (2018).

Masuo, S.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Matsuzaki, K.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Mazzamuto, G.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Meixner, A. J.

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Mivelle, M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Naiki, H.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Neitzke, O.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

Odom, T. W.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

Ostby, E.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Ovvyan, A. P.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Ozerov, I.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Pazzagli, S.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Pernice, W. H.

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Poddubny, A. N.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Prawer, S.

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Protsenko, I.

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Proust, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Pukhov, A.

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

Pukhov, A. A.

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. Lett. 69, 681 (1946).

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Rastelli, A.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Regal, C. A.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Regmi, R.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Reichel, J.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

Reindl, M.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Rigneault, H.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Ritchie, D.

Rivoire, K.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Rodionov, I. A.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Rousseaux, B.

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Ryzhikov, I. A.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Sandoghdar, V.

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Santori, C.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

Sasaki, K.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Schweickert, L.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Shah, D.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Shalaev, V. M.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Shalaginov, M. Y.

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Shegai, T.

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Shields, A.

Shishkov, V. Y.

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

Siampour, H.

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
[Crossref] [PubMed]

Simon, C.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Simovski, C. R.

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced Raman scattering,” Nanophotonics 8, 429 (2018).

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Simpson, D.

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Slater, J. A.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Slobozhanyuk, A. P.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Sridharan, D.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

Steiner, M.

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

Su, C.

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

Suib, S. L.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Sun, Y.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Takata, H.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Tamai, N.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Tittel, W.

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Toth, M.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

Tran, T. T.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

Tretyakov, S. A.

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

Trotta, R.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Unitt, D.

Vahala, K. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

Vassant, S.

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Vinogradov, A.

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

Vinogradov, A. P.

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

Vuckovic, J.

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Waks, E.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

Wang, D.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

Wang, L.

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

Wenger, J.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Winkler, P. M.

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

Xu, Z.-Q.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

Yang, A.

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zeuner, K. D.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Zhang, P.

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Zhao, J.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Zhou, Y.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Zichi, J.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

Zou, S.

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Zwiller, V.

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

ACS Photonics (2)

P. Lombardi, A. P. Ovvyan, S. Pazzagli, G. Mazzamuto, G. Kewes, O. Neitzke, N. Gruhler, O. Benson, W. H. Pernice, and F. S. Cataliotti, “Photostable Molecules on Chip: Integrated Sources of Nonclassical Light,” ACS Photonics 5, 126–132 (2018).

P. Zhang, I. Protsenko, V. Sandoghdar, and X.-W. Chen, “A Single-Emitter Gain Medium for Bright Coherent Radiation from a Plasmonic Nanoresonator,” ACS Photonics 4(11), 2738–2744 (2017).
[Crossref]

Appl. Phys. Lett. (2)

L. Schweickert, K. D. Jöns, K. D. Zeuner, S. F. Covre da Silva, H. Huang, T. Lettner, M. Reindl, J. Zichi, R. Trotta, A. Rastelli, and V. Zwiller, “On-demand generation of background-free single photons from a solid-state source,” Appl. Phys. Lett. 112(9), 093106 (2018).
[Crossref]

M. Steiner, A. Hartschuh, R. Korlacki, and A. J. Meixner, “Highly efficient, tunable single photon source based on single molecules,” Appl. Phys. Lett. 90(18), 183122 (2007).
[Crossref]

Entropy (Basel) (1)

R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy (Basel) 15(12), 2100–2128 (2013).
[Crossref]

Nano Lett. (5)

T. T. Tran, D. Wang, Z.-Q. Xu, A. Yang, M. Toth, T. W. Odom, and I. Aharonovich, “Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays,” Nano Lett. 17(4), 2634–2639 (2017).
[Crossref] [PubMed]

H. Takata, H. Naiki, L. Wang, H. Fujiwara, K. Sasaki, N. Tamai, and S. Masuo, “Detailed Observation of Multiphoton Emission Enhancement from a Single Colloidal Quantum Dot Using a Silver-Coated AFM Tip,” Nano Lett. 16(9), 5770–5778 (2016).
[Crossref] [PubMed]

R. Regmi, J. Berthelot, P. M. Winkler, M. Mivelle, J. Proust, F. Bedu, I. Ozerov, T. Begou, J. Lumeau, H. Rigneault, M. F. García-Parajó, S. Bidault, J. Wenger, and N. Bonod, “All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules,” Nano Lett. 16(8), 5143–5151 (2016).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities,” Nano Lett. 16(1), 270–275 (2016).
[Crossref] [PubMed]

S. I. Bogdanov, M. Y. Shalaginov, A. S. Lagutchev, C.-C. Chiang, D. Shah, A. S. Baburin, I. A. Ryzhikov, I. A. Rodionov, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas,” Nano Lett. 18(8), 4837–4844 (2018).
[Crossref] [PubMed]

Nanophotonics (1)

S. I. Maslovski and C. R. Simovski, “Purcell factor and local intensity enhancement in surface-enhanced Raman scattering,” Nanophotonics 8, 429 (2018).

Nanoscale (2)

H. Siampour, S. Kumar, and S. I. Bozhevolnyi, “Chip-integrated plasmonic cavity-enhanced single nitrogen-vacancy center emission,” Nanoscale 9(45), 17902–17908 (2017).
[Crossref] [PubMed]

S. Dey, Y. Zhou, Y. Sun, J. A. Jenkins, D. Kriz, S. L. Suib, O. Chen, S. Zou, and J. Zhao, “Excitation wavelength dependent photon anti-bunching/bunching from single quantum dots near gold nanostructures,” Nanoscale 10(3), 1038–1046 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10(1), 2–6 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

I. Aharonovich, D. Englund, and M. Toth, “Solid-state single-photon emitters,” Nat. Photonics 10(10), 631–641 (2016).
[Crossref]

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011).
[Crossref]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Nat. Phys. (1)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012).
[Crossref]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. A (3)

B. Huttner and S. M. Barnett, “Quantization of the electromagnetic field in dielectrics,” Phys. Rev. A 46(7), 4306–4322 (1992).
[Crossref] [PubMed]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A 82(4), 043845 (2010).
[Crossref]

S. Guha, H. Krovi, C. A. Fuchs, Z. Dutton, J. A. Slater, C. Simon, and W. Tittel, “Rate-loss analysis of an efficient quantum repeater architecture,” Phys. Rev. A 92(2), 022357 (2015).
[Crossref]

Phys. Rev. B (2)

V. Y. Shishkov, E. Andrianov, A. Pukhov, and A. Vinogradov, “Hermitian description of localized plasmons in dispersive dissipative subwavelength spherical nanostructures,” Phys. Rev. B 94(23), 235443 (2016).
[Crossref]

B. Rousseaux, D. G. Baranov, M. Käll, T. Shegai, and G. Johansson, “Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems,” Phys. Rev. B 98(4), 045435 (2018).
[Crossref]

Phys. Rev. E (1)

V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and A. A. Lisyansky, “Zeroth law of thermodynamics for thermalized open quantum systems having constants of motion,” Phys. Rev. E 98, 022132 (2018).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient Routing of Single Photons by One Atom and a Microtoroidal Cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[Crossref] [PubMed]

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. Lett. 69, 681 (1946).

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a Single Nitrogen-Vacancy Center in Diamond to a Fiber-Based Microcavity,” Phys. Rev. Lett. 110(24), 243602 (2013).
[Crossref] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of Nitrogen-Vacancy Centers to Photonic Crystal Cavities in Monocrystalline Diamond,” Phys. Rev. Lett. 109(3), 033604 (2012).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011).
[Crossref]

S. Buckley, K. Rivoire, and J. Vučković, “Engineered quantum dot single-photon sources,” Rep. Prog. Phys. 75(12), 126503 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82(7), 071101 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

A. E. Krasnok, A. P. Slobozhanyuk, C. R. Simovski, S. A. Tretyakov, A. N. Poddubny, A. E. Miroshnichenko, Y. S. Kivshar, and P. A. Belov, “An antenna model for the Purcell effect,” Sci. Rep. 5(1), 12956 (2015).
[Crossref] [PubMed]

K. Matsuzaki, S. Vassant, H.-W. Liu, A. Dutschke, B. Hoffmann, X. Chen, S. Christiansen, M. R. Buck, J. A. Hollingsworth, S. Götzinger, and V. Sandoghdar, “Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna,” Sci. Rep. 7(1), 42307 (2017).
[Crossref] [PubMed]

Science (2)

J. L. O’Brien, “Optical quantum computing,” Science 318(5856), 1567–1570 (2007).
[Crossref] [PubMed]

M. Hillery, “Physics. Quantum walks through a waveguide maze,” Science 329(5998), 1477–1478 (2010).
[Crossref] [PubMed]

Theor. Comput. Sci. (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Other (9)

Quantum Cryptography Technology Experts Panel, “A Quantum Information Science and Technology Roadmap: Part 2: Quantum Technology,” (Advanced Research and Development Activity, 2004).

D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).

H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations (Theoretical and Mathematical Physics) (Springer, 2003).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge university Press, 1997).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995).

H.-P. Breuer and F. Petruccione, The theory of Open Quantum Systems (Oxford University Press on Demand, 2002).

E. B. Davies, “Quantum Theory of Open Systems,” (Academic Press, 1976).

W. Vogel and D.-G. Welsch, Quantum Optics (John Wiley & Sons, 2006).

H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer Science & Business Media, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 g (2) (0) as a function of Ω R /kT at different pumping rates. For the solid, dashed, and dot-dashed curves, the pumping rates are γ pump /ω= 10 5 , γ pump /ω= 10 3 , and γ pump /ω=0.05, respectively. The parameters used in simulations are γ rad =5 10 13 s 1 , γ nonrad =2 10 12 s 1 , γ deph =5 10 12 s 1 , and T=300K, corresponding to typical experimental values [27,32,45]. We assume here that the frequency of the nanoantenna mode and the frequency of optical transition in the SPS are the same, ω= ω M = ω TLS =2.95 10 15 s 1 . This frequency corresponds to a wavelength of 635nm.
Fig. 2
Fig. 2 The dependence of g (2) ( 0 ) on the detuning, Δ, and the interaction constant, Ω R , obtained from Eq. (17).
Fig. 3
Fig. 3 The dependence of g (2) (0) on the radiation intensity of the nanoantenna divided by the intensity of a solitary SPS, I SPS = 10 9 ω TLS s–1. The pump rate changes from 108 s−1 to 1012 s−1; the rate of radiative and nonradiative losses are γ rad =5 10 13 s–1 and γ nonrad =2 10 12 s–1, respectively; and the the dephasing rate is γ deph =5 10 12 s–1. The zone below the red line displays the values required for the quantum key distribution (QKD) applications. The blue line indicates the values that are required for Bell-state sources.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

H ^ S = ω M a ^ + a ^ + 2 ω TLS σ ^ z + Ω R ( σ ^ + a ^ + a ^ + σ ^ ),
| n,+=cos φ n | n1,e+sin φ n | n,g,| n,=sin φ n | n1,e+cos φ n | n,g,
E n,± =( n+1/2 ) ω M ± Ω R 2 ( n+1 )+ ( Δ/2 ) 2 , E 0 = ω TLS 2 ,
H ^ R = H ^ R rad + H ^ R deph + H ^ R J = k,λ ω k b ^ k,λ + b ^ k,λ + j ω j b ^ j + b ^ j + j ω j r ^ j + r ^ j
H ^ SR = k,λ [ κ k,λ rad a ^ + b ^ k,λ + κ k,λ rad a ^ b ^ k,λ + ] + j κ j ph σ ^ z ( b ^ j + b ^ j + ) + j κ j nonrad ( a ^ + r ^ j + a ^ r ^ j + ) .
t ρ ^ S ( t )= i [ H ^ S , ρ ^ S ]+L[ ρ ^ S ( t ) ],
L[ ρ ^ S ( t ) ]= m m γ rad m m + γ nonrad m m 2 ( 2 S ^ a m m ρ ^ S ( S ^ a m m ) + ( S ^ a m m ) + S ^ a m m ρ ^ S ρ ^ S ( S ^ a m m ) + S ^ a m m ) + m m γ deph m m 2 ( 2 S ^ σ z m m ρ ^ S ( S ^ σ z m m ) + ( S ^ σ z m m ) + S ^ σ z m m ρ ^ S ρ ^ S ( S ^ σ z m m ) + S ^ σ z m m ) + m m γ pump m m 2 ( 2 ( S ^ σ m m ) + ρ ^ S S ^ σ m m S ^ σ m m ( S ^ σ m m ) + ρ ^ S ρ ^ S S ^ σ m m ( S ^ σ m m ) + ) ,
p ˙ m = m γ m m p m ( m γ m m ) p m
γ m m =( γ m m rad + γ m m nonrad ) | m| a ^ | m | 2 + γ m m deph | m| σ ^ z | m | 2 + γ m m pump | m| σ ^ + | m | 2 .
g (2) (0)= a + a + aa / a + a 2 .
Δ 1 =2 Ω R 2 +1/4 ( ω M ω TLS ) 2 Δ 2 =2 2 Ω R 2 +1/4 ( ω M ω TLS ) 2
p m ~ e E m /kT .
g (2) (0)=2 e (2 Δ 1 Δ 2 )/2kT | cos φ 2 | 2 + e Δ 2 /kT | sin φ 2 | 2 ( | cos φ 1 | 2 + e Δ 1 /kT | sin φ 1 | 2 ) 2 .
Δ 1 =2 Ω R , Δ 2 =2 2 Ω R .
g (2) (0)~2, Ω R /kT<<1,
g (2) (0)~exp( ( 2 2 ) Ω R /kT )<<1, Ω R /kT>>1.
g (2) (0) =2 p | 2,+ sin 2 φ 2 + p | 2, cos 2 φ 2 ( p | 1, cos 2 φ 1 + p | 1,+ sin 2 φ 1 + p | 2, (2 cos 2 φ 2 + sin 2 φ 2 )+ p | 2,+ (2 sin 2 φ 2 + cos 2 φ 2 ) ) 2 ,

Metrics