Abstract

In this article, we propose and experimentally demonstrate a fiber Bragg grating (FBG) sensor interrogation technique based on an optoelectronic oscillator (OEO). The main components of the OEO loop in this proposed scheme contains an electro-optic modulator (EOM), a section of dispersive element, an electric filter, and a photodiode (PD). The reflection signal of the FBG sensor is functioning as the optical source of the OEO. The oscillating frequency of the OEO is determined by the overall time delay of the OEO loop. Due to the dispersive element in the loop, time delay of the OEO loop is a function of the OEO optical source wavelength. As a result, the wavelength change of the FBG can be converted into the oscillating frequency shift of the OEO. A proof-of-concept FBG based axial strain sensing experiment is carried out. The experimental results show that the frequency of the OEO generated microwave signals have a good linear relationship with the axial strain applied to the FBG. The sensitivity is about 58 Hz/με when using dispersion compensation fiber (DCF) with dispersion of −120 ps/(nm*km) as the dispersive medium and tracking the microwave signal with frequency near 2056.4 MHz, which is consistent with the theoretical calculation. The proposed method can also be applied to interrogate optical sensors based on detecting the wavelength change of the optical signals.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter

Bin Yin, Muguang Wang, Songhua Wu, Yu Tang, Suchun Feng, and Hongwei Zhang
Opt. Express 25(13) 14106-14113 (2017)

Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters

Beilei Wu, Muguang Wang, Yue Dong, Yu Tang, Hongqian Mu, Haisu Li, Bin Yin, Fengping Yan, and Zhen Han
Opt. Express 26(21) 27628-27638 (2018)

High-precision thermal-insensitive strain sensor based on optoelectronic oscillator

ZhiQiang Fan, Jun Su, Tianhang Zhang, Ning Yang, and Qi Qiu
Opt. Express 25(22) 27037-27050 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
    [Crossref]
  2. J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
    [Crossref]
  3. J. P. Yao, “Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
    [Crossref]
  4. L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
    [Crossref]
  5. A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
    [Crossref]
  6. R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
    [Crossref]
  7. J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
    [Crossref] [PubMed]
  8. J. Wang, W. Zhu, C. Ma, and T. Xu, “FBG wavelength demodulation based on a radio frequency optical true time delay method,” Opt. Lett. 43(11), 2664–2667 (2018).
    [Crossref] [PubMed]
  9. X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
    [Crossref]
  10. J. P. Yao, “Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
    [Crossref]
  11. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  12. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  13. Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
    [Crossref] [PubMed]
  14. A. Liu, Y. Yang, R. Song, J. Liu, J. Dai, Z. Tian, and K. Xu, “High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation technique,” Opt. Express 27(7), 9848–9856 (2019).
    [Crossref] [PubMed]
  15. X. Zou, M. Li, W. Pan, B. Luo, L. Yan, and L. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
    [Crossref] [PubMed]
  16. J. Lee, S. Park, D. H. Seo, S. H. Yim, S. Yoon, and D. Cho, “Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer,” Opt. Express 24(19), 21910–21920 (2016).
    [Crossref] [PubMed]
  17. P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
    [Crossref]
  18. J. Wang, J. Yu, W. Miao, B. Sun, S. Jia, W. Wang, and Q. Wu, “Long-range, high-precision absolute distance measurement based on two optoelectronic oscillators,” Opt. Lett. 39(15), 4412–4415 (2014).
    [Crossref] [PubMed]
  19. L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
    [Crossref]
  20. Y. Zhu, X. Jin, H. Chi, S. Zheng, and X. Zhang, “High-sensitivity temperature sensor based on an optoelectronic oscillator,” Appl. Opt. 53(22), 5084–5087 (2014).
    [Crossref] [PubMed]
  21. C. H. Lee and S. H. Yim, “Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device,” Opt. Express 22(11), 13634–13640 (2014).
    [Crossref] [PubMed]
  22. Z. Fan, J. Su, T. Zhang, N. Yang, and Q. Qiu, “High-precision thermal-insensitive strain sensor based on optoelectronic oscillator,” Opt. Express 25(22), 27037–27050 (2017).
    [Crossref] [PubMed]
  23. Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
    [Crossref]
  24. S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  25. F. Kong, W. Li, and J. Yao, “Transverse load sensing based on a dual-frequency optoelectronic oscillator,” Opt. Lett. 38(14), 2611–2613 (2013).
    [Crossref] [PubMed]
  26. F. Kong, B. Romeira, J. Zhang, W. Li, and J. Yao, “A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing,” J. Lightwave Technol. 32(9), 1784–1793 (2014).
    [Crossref]
  27. Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
    [Crossref]
  28. J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
    [Crossref]
  29. Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).
  30. B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
    [Crossref] [PubMed]
  31. B. Wu, M. Wang, Y. Dong, Y. Tang, H. Mu, H. Li, B. Yin, F. Yan, and Z. Han, “Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters,” Opt. Express 26(21), 27628–27638 (2018).
    [Crossref] [PubMed]

2019 (2)

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

A. Liu, Y. Yang, R. Song, J. Liu, J. Dai, Z. Tian, and K. Xu, “High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation technique,” Opt. Express 27(7), 9848–9856 (2019).
[Crossref] [PubMed]

2018 (5)

2017 (7)

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

J. P. Yao, “Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
[Crossref]

Z. Fan, J. Su, T. Zhang, N. Yang, and Q. Qiu, “High-precision thermal-insensitive strain sensor based on optoelectronic oscillator,” Opt. Express 25(22), 27037–27050 (2017).
[Crossref] [PubMed]

2016 (5)

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

J. Lee, S. Park, D. H. Seo, S. H. Yim, S. Yoon, and D. Cho, “Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer,” Opt. Express 24(19), 21910–21920 (2016).
[Crossref] [PubMed]

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

2015 (2)

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

J. P. Yao, “Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

2014 (5)

2013 (1)

2011 (1)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

2010 (1)

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

1996 (1)

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Capmany, J.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Chen, L. R.

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

Chen, Y.

Cheng, R.

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Chew, S. X.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Chi, H.

Cho, D.

Comanici, M.-I.

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

Cui, P.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Cui, Y.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

Dai, J.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Dong, Y.

Fan, Z.

Feng, S.

Fernandez-Pousa, C. R.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Guo, D.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

Guo, Y.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Han, Z.

Hervas, J.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Hervás, J.

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Hu, J. J.

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

Jia, S.

Jian, S.

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Jin, W.

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Jin, X.

Jing, Z.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Journet, B.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kong, F.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Kung, P.

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Lee, C. H.

Lee, J.

Li, H.

Li, L.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Li, M.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

X. Zou, M. Li, W. Pan, B. Luo, L. Yan, and L. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
[Crossref] [PubMed]

Li, P. X.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Li, W.

Li, W. Z.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Lin, J.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Liu, A.

Liu, J.

A. Liu, Y. Yang, R. Song, J. Liu, J. Dai, Z. Tian, and K. Xu, “High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation technique,” Opt. Express 27(7), 9848–9856 (2019).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Liu, S.

Liu, X. K.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Liu, Y.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Luo, B.

Ma, C.

Maleki, L.

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Miao, W.

Minasian, R.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Moslemi, P.

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

Mu, H.

Nakatani, K.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Nguyen, L.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Nguyen, L. D.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Pan, S.

Pan, W.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

X. Zou, M. Li, W. Pan, B. Luo, L. Yan, and L. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
[Crossref] [PubMed]

Park, S.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

Qi, D.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Qiu, Q.

Ricchiuti, A. L.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Rohollahnejad, J.

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Romeira, B.

Sales, S.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Seo, D. H.

Shao, L.

Shao, L. Y.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Shen, Y.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Shi, Q.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

Song, R.

Su, J.

Sun, B.

Tang, Y.

Tian, Z.

Wang, J.

Wang, M.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

B. Wu, M. Wang, Y. Dong, Y. Tang, H. Mu, H. Li, B. Yin, F. Yan, and Z. Han, “Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters,” Opt. Express 26(21), 27628–27638 (2018).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

Wang, W.

Wang, Y.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

Wei, B.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Wen, Y.

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Wu, B.

Wu, C.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Wu, Q.

Wu, S.

Wu, Y.

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Xia, L.

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Xia, W.

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

Xiao, S.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Xu, K.

Xu, T.

Yan, F.

Yan, J.

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Yan, L.

Yan, L. S.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Yang, L.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Yang, N.

Yang, W.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Yang, Y.

A. Liu, Y. Yang, R. Song, J. Liu, J. Dai, Z. Tian, and K. Xu, “High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation technique,” Opt. Express 27(7), 9848–9856 (2019).
[Crossref] [PubMed]

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Yao, J.

Yao, J. P.

J. P. Yao, “Optoelectronic Oscillators for High Speed and High Resolution Optical Sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
[Crossref]

J. P. Yao, “Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

Yao, X. S.

Yi, X.

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Yim, S. H.

Yin, B.

Yoon, S.

Yu, J.

Yu, T.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Yue, W.

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

Zhang, H.

Zhang, J.

Zhang, T.

Zhang, X.

Zheng, S.

Zhou, J.

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

Zhu, J.

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

Zhu, N. H.

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

Zhu, W.

Zhu, Y.

Zou, X.

Zou, X. H.

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Sci. (Basel) (1)

L. R. Chen, M.-I. Comanici, P. Moslemi, J. J. Hu, and P. Kung, “A Review of Recent Results on Simultaneous Interrogation of Multiple Fiber Bragg Grating-Based Sensors Using Microwave Photonics,” Appl. Sci. (Basel) 9(2), 298 (2019).
[Crossref]

Fiber Integr. Opt. (1)

J. P. Yao, “Microwave Photonics for High-Resolution and High-Speed Interrogation of Fiber Bragg Grating Sensors,” Fiber Integr. Opt. 34(4), 204–216 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

X. H. Zou, X. K. Liu, W. Z. Li, P. X. Li, W. Pan, L. S. Yan, and L. Y. Shao, “Optoelectronic Oscillators (OEOs) to sensing, measurement, and detection,” IEEE J. Quantum Electron. 52(1), 1–16 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Hervas, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron. 23(2), 327–339 (2017).
[Crossref]

IEEE Photonics J. (2)

S. X. Chew, X. Yi, W. Yang, C. Wu, L. Li, L. Nguyen, and R. Minasian, “Optoelectronic oscillator based sensor using an on-chip sensing probe,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Y. Yang, M. Wang, Y. Shen, T. Yu, Z. Jing, W. Yue, S. Xiao, J. Liu, B. Wei, and D. Qi, “Refractive Index and Temperature Sensing based on an optoelectronic oscillator incorporating a Fabry-Perot fiber Bragg grating,” IEEE Photonics J. 10(1), 1–9 (2017).

IEEE Photonics Technol. Lett. (5)

J. Liu, M. Wang, Y. Tang, Y. Yang, Y. Wu, W. Jin, and S. Jian, “Switchable Optoelectronic Oscillator Using an FM-PS-FBG for Strain and Temperature Sensing,” IEEE Photonics Technol. Lett. 29(23), 2008–2011 (2017).
[Crossref]

Y. Wang, J. Zhang, and J. Yao, “An Optoelectronic Oscillator for High Sensitivity Temperature Sensing,” IEEE Photonics Technol. Lett. 28(13), 1458–1461 (2016).
[Crossref]

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive Index Measurement by using an optoelectronic oscillator,” IEEE Photonics Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

R. Cheng, L. Xia, J. Yan, J. Zhou, Y. Wen, and J. Rohollahnejad, “Radio Frequency FBG-Based Interferometer for Remote Adaptive Strain Monitoring,” IEEE Photonics Technol. Lett. 27(15), 1577–1580 (2015).
[Crossref]

P. Cui, L. Yang, Y. Guo, J. Lin, Y. Liu, and J. Zhu, “Absolute Distance Measurement Using an Optical Comb and an Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 30(8), 744–747 (2018).
[Crossref]

IEEE Sens. J. (1)

Q. Shi, Y. Wang, Y. Cui, W. Xia, D. Guo, and M. Wang, “Resolution-enhanced fiber grating refractive index sensor based on an optoelectronic oscillator,” IEEE Sens. J. 18(23), 9562–9567 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Lit. Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lit. Technol. 15(8), 1442–1463 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

Opt. Express (8)

Y. Chen, S. Liu, and S. Pan, “Multi-format signal generation using a frequency-tunable optoelectronic oscillator,” Opt. Express 26(3), 3404–3420 (2018).
[Crossref] [PubMed]

A. Liu, Y. Yang, R. Song, J. Liu, J. Dai, Z. Tian, and K. Xu, “High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation technique,” Opt. Express 27(7), 9848–9856 (2019).
[Crossref] [PubMed]

X. Zou, M. Li, W. Pan, B. Luo, L. Yan, and L. Shao, “Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator,” Opt. Express 22(9), 11129–11139 (2014).
[Crossref] [PubMed]

J. Lee, S. Park, D. H. Seo, S. H. Yim, S. Yoon, and D. Cho, “Displacement measurement using an optoelectronic oscillator with an intra-loop Michelson interferometer,” Opt. Express 24(19), 21910–21920 (2016).
[Crossref] [PubMed]

C. H. Lee and S. H. Yim, “Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device,” Opt. Express 22(11), 13634–13640 (2014).
[Crossref] [PubMed]

Z. Fan, J. Su, T. Zhang, N. Yang, and Q. Qiu, “High-precision thermal-insensitive strain sensor based on optoelectronic oscillator,” Opt. Express 25(22), 27037–27050 (2017).
[Crossref] [PubMed]

B. Yin, M. Wang, S. Wu, Y. Tang, S. Feng, and H. Zhang, “High sensitivity axial strain and temperature sensor based on dual-frequency optoelectronic oscillator using PMFBG Fabry-Perot filter,” Opt. Express 25(13), 14106–14113 (2017).
[Crossref] [PubMed]

B. Wu, M. Wang, Y. Dong, Y. Tang, H. Mu, H. Li, B. Yin, F. Yan, and Z. Han, “Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters,” Opt. Express 26(21), 27628–27638 (2018).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

A. L. Ricchiuti, J. Hervás, and S. Sales, “Cascade FBGs distributed sensors interrogation using microwave photonics filtering techniques,” Opt. Laser Technol. 77, 144–150 (2016).
[Crossref]

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration of the experimental setup.
Fig. 2
Fig. 2 (a)spectrum of the FBG sensor, (b) group delay of the DCF.
Fig. 3
Fig. 3 FBG based axial strain sensor performance ((a) strain increases, (b) strain decreases) (c) the relationship between the resonance wavelength shift and the applied strain (inset: Errors between strain increase and decreases measurement).
Fig. 4
Fig. 4 Measured spectrum of microwave signal generated by the OEO around 2056.4 GHz (2MHz span).
Fig. 5
Fig. 5 Spectra of the tracking microwave harmonic when FBG under different axial strains ((a) strain increases, (b) strain decreases), (c) the relationship between the frequency shifts of the tracking signal and different axial strains (inset: Errors between strain increases and decreases measurement).
Fig. 6
Fig. 6 Spectra of the tracking microwave harmonic (around 3555 GHz) when sensor FBG under different axial strains ((a) strain increases, (b) strain decreases), (c) the relationship between the frequency shifts of the tracking signal and different axial strains. (inset: Errors between strain increases and decreases measurement).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δλ=0.783* λ 0 *ξ
T= T e + T S + T D = T e + n S l S + n D l D c
FSR= 1 T = 1 T e + T S + T D
f N =N*FSR= N T e + T S + T D
Δf= f N,Δλ f N = N T e + T S + T D + T λ N T e + T S + T D = f N * D l D Δλ ( T e + T S + T D +D l D Δλ) f N * D l D ( T e + T S + T D ) *Δλ
Δf= f N * 0.783* λ o D l D ( T e + T S + T D ) *ξ= f N * 0.783* λ 0 D l D ( T e + n S l S + n D l D c ) *ξ

Metrics