C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

A. Moridnejad, T. C. Preston, and U. K. Krieger, “Tracking water sorption in glassy aerosol particles using morphology-dependent resonances,” J. Phys. Chem. A 121(42), 8176–8184 (2017).

[Crossref]
[PubMed]

D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transf. 156, 67–79 (2015).

[Crossref]

M. A. Yurkin, “Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle,” J. Quant. Spectrosc. Radiat. Transf. 131, 82–87 (2013).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2234–2247 (2011).

[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 558–589 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 546–557 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[Crossref]
[PubMed]

N. V. Budko and A. B. Samokhin, “Spectrum of the volume integral operator of electromagnetic scattering,” SIAM J. Sci. Comput. 28(2), 682–700 (2006).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[Crossref]
[PubMed]

M. I. Mishchenko and A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116(1–2), 167–179 (2000).

[Crossref]

A. Hoekstra, J. Rahola, and P. Sloot, “Accuracy of internal fields in volume integral equation simulations of light scattering,” Appl. Opt. 37(36), 8482–8497 (1998).

[Crossref]
[PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

P. Chýlek, D. Ngo, and R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9(5), 775–780 (1992).

[Crossref]

C. C. Lam, P. T. Leung, and K. Young, “Explicit asymptotic formulas for the positions, widths, and strengths of resonances in Mie scattering,” J. Opt. Soc. Am. B 9(9), 1585–1592 (1992).

[Crossref]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18(5), 2229–2233 (1978).

[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).

[Crossref]

P. Debye, “Der lichtdruck auf kugeln von beliebigem material,” Ann. Phys. 335(11), 57–136 (1909).

[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).

[Crossref]

L. Bi and P. Yang, “High-frequency extinction efficiencies of spheroids: rigorous T-matrix solutions and semi-empirical approximations,” Opt. Express 22(9), 10270–10293 (2014).

[Crossref]
[PubMed]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).

[Crossref]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

N. V. Budko and A. B. Samokhin, “Spectrum of the volume integral operator of electromagnetic scattering,” SIAM J. Sci. Comput. 28(2), 682–700 (2006).

[Crossref]

D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transf. 156, 67–79 (2015).

[Crossref]

G. Videen, J. Li, and P. Chýlek, “Resonances and poles of weakly absorbing spheres,” J. Opt. Soc. Am. A 12(5), 916–921 (1995).

[Crossref]

P. Chýlek, D. Ngo, and R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9(5), 775–780 (1992).

[Crossref]

P. Chýlek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7(9), 1609–1613 (1990).

[Crossref]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18(5), 2229–2233 (1978).

[Crossref]

P. Chýlek, “Partial-wave resonances and the ripple structure in the Mie normalized extinction cross section,” J. Opt. Soc. Am. 66(3), 285–287 (1976).

[Crossref]

P. Debye, “Der lichtdruck auf kugeln von beliebigem material,” Ann. Phys. 335(11), 57–136 (1909).

[Crossref]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).

[Crossref]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2234–2247 (2011).

[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 546–557 (2007).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 558–589 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[Crossref]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[Crossref]
[PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18(5), 2229–2233 (1978).

[Crossref]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18(5), 2229–2233 (1978).

[Crossref]

A. Moridnejad, T. C. Preston, and U. K. Krieger, “Tracking water sorption in glassy aerosol particles using morphology-dependent resonances,” J. Phys. Chem. A 121(42), 8176–8184 (2017).

[Crossref]
[PubMed]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).

[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 546–557 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[Crossref]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[Crossref]
[PubMed]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).

[Crossref]
[PubMed]

A. Moridnejad, T. C. Preston, and U. K. Krieger, “Tracking water sorption in glassy aerosol particles using morphology-dependent resonances,” J. Phys. Chem. A 121(42), 8176–8184 (2017).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

A. Moridnejad, T. C. Preston, and U. K. Krieger, “Tracking water sorption in glassy aerosol particles using morphology-dependent resonances,” J. Phys. Chem. A 121(42), 8176–8184 (2017).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

A. Hoekstra, J. Rahola, and P. Sloot, “Accuracy of internal fields in volume integral equation simulations of light scattering,” Appl. Opt. 37(36), 8482–8497 (1998).

[Crossref]
[PubMed]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

N. V. Budko and A. B. Samokhin, “Spectrum of the volume integral operator of electromagnetic scattering,” SIAM J. Sci. Comput. 28(2), 682–700 (2006).

[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transf. 156, 67–79 (2015).

[Crossref]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

L. Bi and P. Yang, “High-frequency extinction efficiencies of spheroids: rigorous T-matrix solutions and semi-empirical approximations,” Opt. Express 22(9), 10270–10293 (2014).

[Crossref]
[PubMed]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).

[Crossref]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transf. 156, 67–79 (2015).

[Crossref]

M. A. Yurkin, “Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle,” J. Quant. Spectrosc. Radiat. Transf. 131, 82–87 (2013).

[Crossref]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2234–2247 (2011).

[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 558–589 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 546–557 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[Crossref]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[Crossref]
[PubMed]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

P. Debye, “Der lichtdruck auf kugeln von beliebigem material,” Ann. Phys. 335(11), 57–136 (1909).

[Crossref]

M. I. Mishchenko and A. A. Lacis, “Manifestations of morphology-dependent resonances in Mie scattering matrices,” Appl. Math. Comput. 116(1–2), 167–179 (2000).

[Crossref]

F. Borghese, P. Denti, R. Saija, M. A. Iatì, and O. I. Sindoni, “Optical resonances of spheres containing an eccentric spherical inclusion Résonances optiques de sphères contenant une inclusion sphérique excentrée,” J. Opt. 29(1), 28–34 (1998).

[Crossref]

G. Videen, J. Li, and P. Chýlek, “Resonances and poles of weakly absorbing spheres,” J. Opt. Soc. Am. A 12(5), 916–921 (1995).

[Crossref]

B. R. Johnson, “Theory of morphology-dependent resonances: shape resonances and width formulas,” J. Opt. Soc. Am. A 10(2), 343–352 (1993).

[Crossref]

P. R. Conwell, P. W. Barber, and C. K. Rushforth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1(1), 62–67 (1984).

[Crossref]

P. Chýlek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7(9), 1609–1613 (1990).

[Crossref]

P. Chýlek, D. Ngo, and R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9(5), 775–780 (1992).

[Crossref]

D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11(4), 1352–1359 (1994).

[Crossref]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. II. An extrapolation technique to increase the accuracy,” J. Opt. Soc. Am. A 23(10), 2592–2601 (2006).

[Crossref]
[PubMed]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “Convergence of the discrete dipole approximation. I. Theoretical analysis,” J. Opt. Soc. Am. A 23(10), 2578–2591 (2006).

[Crossref]
[PubMed]

A. Moridnejad, T. C. Preston, and U. K. Krieger, “Tracking water sorption in glassy aerosol particles using morphology-dependent resonances,” J. Phys. Chem. A 121(42), 8176–8184 (2017).

[Crossref]
[PubMed]

A. Penttilä, E. Zubko, K. Lumme, K. Muinonen, M. A. Yurkin, B. T. Draine, J. Rahola, A. G. Hoekstra, and Y. Shkuratov, “Comparison between discrete dipole implementations and exact techniques,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 417–436 (2007).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 558–589 (2007).

[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transf. 106(1–3), 546–557 (2007).

[Crossref]

M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transf. 112(13), 2234–2247 (2011).

[Crossref]

M. A. Yurkin, “Symmetry relations for the Mueller scattering matrix integrated over the azimuthal angle,” J. Quant. Spectrosc. Radiat. Transf. 131, 82–87 (2013).

[Crossref]

D. A. Smunev, P. C. Chaumet, and M. A. Yurkin, “Rectangular dipoles in the discrete dipole approximation,” J. Quant. Spectrosc. Radiat. Transf. 156, 67–79 (2015).

[Crossref]

C. Liu, S. Teng, Y. Zhu, M. A. Yurkin, and Y. L. Yung, “Performance of the discrete dipole approximation for optical properties of black carbon aggregates,” J. Quant. Spectrosc. Radiat. Transf. 221, 98–109 (2018).

[Crossref]

L. Bi and P. Yang, “High-frequency extinction efficiencies of spheroids: rigorous T-matrix solutions and semi-empirical approximations,” Opt. Express 22(9), 10270–10293 (2014).

[Crossref]
[PubMed]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20(15), 16763–16776 (2012).

[Crossref]

P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial-wave resonances,” Phys. Rev. A 18(5), 2229–2233 (1978).

[Crossref]

M. A. Yurkin, M. Min, and A. G. Hoekstra, “Application of the discrete dipole approximation to very large refractive indices: Filtered coupled dipoles revived,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82(3 Pt 2), 036703 (2010).

[Crossref]
[PubMed]

A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).

[Crossref]

N. V. Budko and A. B. Samokhin, “Spectrum of the volume integral operator of electromagnetic scattering,” SIAM J. Sci. Comput. 28(2), 682–700 (2006).

[Crossref]

H. C. Hulst and H. C. van de Hulst, Light scattering by small particles (Courier Corporation, 1957).

K. N. Liou, An introduction to atmospheric radiation (Elsevier, 2002).

C. F. Bohren and D. R. Huffman, Absorption and scattering by a sphere (Wiley-VCH Verlag GmbH, 1983).