Abstract

An injection pulse-seeded terahertz-wave parametric generator (ips-TPG) has been demonstrated with gain enhancement in wide tuning range. Theoretical analysis denotes that the compensation of initial Stokes energy is favorable to the THz gain enhancement in wide frequency range, which is attributed to the improvement on interaction of stimulated polariton scattering (SPS) and difference frequency generation (DFG) processes. In the experiment, the THz frequency tuning range from 1.04 THz to 5.15 THz was achieved based on near-stoichiometric LiNbO3 (SLN) crystal. Compared with the traditional terahertz parametric oscillator (TPO) under the same experimental conditions, a significant enhancement of THz output energy was occurred in high frequency range. As the THz frequency increased from 1.9 THz to 3.6 THz, the enhancement ratios from 1.6 times to 34.7 times were obtained. Besides, the 3dB bandwidth of ips-TPG was measured to be 2.1 THz, which was about 2.6 times that of SLN-TPO. This THz parametric source with a relative flat gain in wide frequency range is suitable to a variety of practical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal

Yuye Wang, Longhuang Tang, Degang Xu, Chao Yan, Yixin He, Jia Shi, Dexian Yan, Hongxiang Liu, Meitong Nie, Jiachen Feng, and Jianquan Yao
Opt. Express 25(8) 8926-8936 (2017)

Energy scaling of terahertz-wave parametric sources

Guanqi Tang, Zhenhua Cong, Zengguang Qin, Xingyu Zhang, Weitao Wang, Dong Wu, Ning Li, Qiang Fu, Qingming Lu, and Shaojun Zhang
Opt. Express 23(4) 4144-4152 (2015)

Achromatically injection-seeded terahertz-wave parametric generator

Kazuhiro Imai, Kodo Kawase, Hiroaki Minamide, and Hiromasa Ito
Opt. Lett. 27(24) 2173-2175 (2002)

References

  • View by:
  • |
  • |
  • |

  1. B. I. Martinez and S. E. Stabenfeldt, “Current trends in biomarker discovery and analysis tools for traumatic brain injury,” J. Biol. Eng. 13(1), 16 (2019).
    [Crossref] [PubMed]
  2. E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
    [Crossref]
  3. G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
    [Crossref]
  4. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
    [Crossref] [PubMed]
  5. K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
    [Crossref] [PubMed]
  6. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
    [Crossref]
  7. K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
    [Crossref] [PubMed]
  8. T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
    [Crossref] [PubMed]
  9. W. Wang, X. Zhang, Q. Wang, Z. Cong, X. Chen, Z. Liu, Z. Qin, P. Li, G. Tang, N. Li, C. Wang, Y. Li, and W. Cheng, “Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal,” Opt. Lett. 39(4), 754–757 (2014).
    [Crossref] [PubMed]
  10. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
    [Crossref] [PubMed]
  11. K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
    [Crossref]
  12. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
    [Crossref] [PubMed]
  13. Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).
  14. G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23(4), 4144–4152 (2015).
    [Crossref] [PubMed]
  15. Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
    [Crossref]
  16. J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
    [Crossref] [PubMed]
  17. S. Carbajo, J. Schulte, X. Wu, K. Ravi, D. N. Schimpf, and F. X. Kärtner, “Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate,” Opt. Lett. 40(24), 5762–5765 (2015).
    [Crossref] [PubMed]
  18. J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
    [Crossref]
  19. Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
    [Crossref]
  20. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, “Terahertz parametric oscillator based on KTiOPO₄ crystal,” Opt. Lett. 39(13), 3706–3709 (2014).
    [Crossref] [PubMed]
  21. C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
    [Crossref]
  22. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, “THz-wave generation via stimulated polariton scattering in KTiOAsO4 crystal,” Opt. Express 22(14), 17092–17098 (2014).
    [Crossref] [PubMed]
  23. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output,” Opt. Express 24(10), 10254–10264 (2016).
    [Crossref] [PubMed]
  24. K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
    [Crossref]
  25. U. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 58(2), 766–775 (1998).
    [Crossref]
  26. Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).
  27. S.S. Sussmen, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (1970).
  28. A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
    [Crossref]
  29. C. M. O’Sullivan and J. A. Murphy, Mid-IR Difference Frequency Generation (Springer, 2003).
  30. N. P. Barnes and V. J. Corcoran, “Parametric generation processes: spectral bandwidth and acceptance angles,” Appl. Opt. 15(3), 696–699 (1976).
    [Crossref] [PubMed]

2019 (1)

B. I. Martinez and S. E. Stabenfeldt, “Current trends in biomarker discovery and analysis tools for traumatic brain injury,” J. Biol. Eng. 13(1), 16 (2019).
[Crossref] [PubMed]

2018 (1)

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

2017 (2)

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

2016 (3)

K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, “Stimulated polariton scattering in an intracavity RbTiOPO4 crystal generating frequency-tunable THz output,” Opt. Express 24(10), 10254–10264 (2016).
[Crossref] [PubMed]

2015 (4)

G. Tang, Z. Cong, Z. Qin, X. Zhang, W. Wang, D. Wu, N. Li, Q. Fu, Q. Lu, and S. Zhang, “Energy scaling of terahertz-wave parametric sources,” Opt. Express 23(4), 4144–4152 (2015).
[Crossref] [PubMed]

S. Carbajo, J. Schulte, X. Wu, K. Ravi, D. N. Schimpf, and F. X. Kärtner, “Efficient narrowband terahertz generation in cryogenically cooled periodically poled lithium niobate,” Opt. Lett. 40(24), 5762–5765 (2015).
[Crossref] [PubMed]

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
[Crossref] [PubMed]

2014 (5)

2012 (1)

2006 (1)

2001 (5)

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

2000 (1)

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

1999 (1)

1998 (1)

U. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 58(2), 766–775 (1998).
[Crossref]

1996 (1)

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

1976 (1)

Abstreiter, G.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Akalin, T.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Anders, S.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Bacquet, D.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Barnes, N. P.

Beck, A.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Bichler, M.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Born, D.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Brodschelm, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Carbajo, S.

Chen, X.

Cheng, W.

Cong, Z.

Corcoran, V. J.

Duan, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Ducournau, G.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Eno, T.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Feng, J.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Fu, Q.

Hayashi, S.

K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

He, Y.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Heinz, E.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Higashi, Y.

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

Huber, R.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Ikari, T.

Imai, K.

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

Ito, H.

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Ito, Hiromasa

Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).

Jun-ichi, Shikata

Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).

Karino, K. I.

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Kärtner, F. X.

Kawase, K.

K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Kawase, Kodo

Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).

Lampin, J. F.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Lee, A. J.

Leitenstorfer, A.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Li, N.

Li, P.

Li, Y.

Liu, H.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Liu, P.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Liu, Z.

Lu, Q.

Maier, M.

U. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 58(2), 766–775 (1998).
[Crossref]

Markelz, A. G.

K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
[Crossref] [PubMed]

Martinez, B. I.

B. I. Martinez and S. E. Stabenfeldt, “Current trends in biomarker discovery and analysis tools for traumatic brain injury,” J. Biol. Eng. 13(1), 16 (2019).
[Crossref] [PubMed]

May, T.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Meyer, H. G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Minamide, H.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

T. Ikari, X. Zhang, H. Minamide, and H. Ito, “THz-wave parametric oscillator with a surface-emitted configuration,” Opt. Express 14(4), 1604–1610 (2006).
[Crossref] [PubMed]

K. Kawase, J. Shikata, H. Minamide, K. Imai, and H. Ito, “Arrayed silicon prism coupler for a terahertz-wave parametric oscillator,” Appl. Opt. 40(9), 1423–1426 (2001).
[Crossref] [PubMed]

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

Moriguchi, Y.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Murate, K.

K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

Nagano, S.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Nawata, K.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

Nie, M.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Niessen, K. A.

K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
[Crossref] [PubMed]

Ortega, T. A.

Pask, H. M.

Pavanello, F.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Peytavit, E.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Qin, Z.

Ravi, K.

Sakai, H.

Sato, A.

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

Sato, M.

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Satoh, T.

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

Schäffel, C.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Schimpf, D. N.

Schulte, J.

Schwarz, U.

U. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 58(2), 766–775 (1998).
[Crossref]

Shi, J.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Shi, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Shikata, J.

Shikata, J. I.

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

Spence, D. J.

Stabenfeldt, S. E.

B. I. Martinez and S. E. Stabenfeldt, “Current trends in biomarker discovery and analysis tools for traumatic brain injury,” J. Biol. Eng. 13(1), 16 (2019).
[Crossref] [PubMed]

Sussmen, S.S.

S.S. Sussmen, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (1970).

Szriftgiser, P.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Taira, T.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

Takida, Y.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Tang, G.

Tang, L.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

Taniuchi, T.

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

J. Shikata, M. Sato, T. Taniuchi, H. Ito, and K. Kawase, “Enhancement of terahertz-wave output from LiNbO(3) optical parametric oscillators by cryogenic cooling,” Opt. Lett. 24(4), 202–204 (1999).
[Crossref] [PubMed]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

Tauser, F.

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Tokizane, Y.

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Urata, Y.

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

Wada, S.

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

Wada, Y.

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

Wang, C.

Wang, Q.

Wang, W.

Wang, Y.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Wu, D.

Wu, X.

Xu, D.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Xu, M.

K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
[Crossref] [PubMed]

Xu, W.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yan, C.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yan, D.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Yao, J.

Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, “Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric LiNbO3 crystal,” Opt. Express 25(8), 1604–1610 (2017).
[Crossref]

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Zaknoune, M.

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

Zakosarenko, V.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Zhang, S.

Zhang, X.

Zhang, Y.

Zhong, K.

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

Zieger, G.

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Express (1)

K. Murate, S. Hayashi, and K. Kawase, “Expansion of the tuning range of injection-seeded terahertz-wave parametric generator up to 5 THz,” Appl. Phys. Express 9(8), 082401 (2016).
[Crossref]

Appl. Phys. Lett. (4)

C. Yan, Y. Wang, D. Xu, W. Xu, P. Liu, D. Yan, P. Duan, K. Zhong, W. Shi, and J. Yao, “Green laser induced terahertz tuning range expanding in KTiOPO4 terahertz parametric oscillator,” Appl. Phys. Lett. 108(1), 011107 (2016).
[Crossref]

K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483–2485 (1996).
[Crossref]

K. Kawase, J. I. Shikata, K. Imai, and H. Ito, “Transform-limited, narrow-linewidth, terahertz-wave parametric generator,” Appl. Phys. Lett. 78(19), 2819–2821 (2001).
[Crossref]

Y. Moriguchi, Y. Tokizane, Y. Takida, K. Nawata, T. Eno, S. Nagano, and H. Minamide, “terahertz-wave generation by optical parametric down-conversion in MgO : LiNbO3,” Appl. Phys. Lett. 113(121103), 1–4 (2018).

Biophys. Rev. (1)

K. A. Niessen, M. Xu, and A. G. Markelz, “Terahertz optical measurements of correlated motions with possible allosteric function,” Biophys. Rev. 7(2), 201–216 (2015).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

J. I. Shikata, K. Kawase, K. I. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO : LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

G. Ducournau, P. Szriftgiser, A. Beck, D. Bacquet, F. Pavanello, E. Peytavit, M. Zaknoune, T. Akalin, and J. F. Lampin, “Ultrawide-bandwidth single-channel 0.4-THz wireless link combining broadband quasi-optic photomixer and coherent detection,” IEEE Trans. Terahertz Sci. Technol. 4(3), 328–337 (2014).
[Crossref]

J. Biol. Eng. (1)

B. I. Martinez and S. E. Stabenfeldt, “Current trends in biomarker discovery and analysis tools for traumatic brain injury,” J. Biol. Eng. 13(1), 16 (2019).
[Crossref] [PubMed]

J. Infrared Millim. Terahertz Waves (2)

E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, H. G. Meyer, and C. Schäffel, “Passive 350 GHz Video Imaging Systems for Security Applications,” J. Infrared Millim. Terahertz Waves 36(10), 879–895 (2015).
[Crossref]

Y. Wada, T. Satoh, Y. Higashi, and Y. Urata, “Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3,” J. Infrared Millim. Terahertz Waves 38(12), 1471–1476 (2017).
[Crossref]

J. Phys. D. Appl. Phys. (1)

Kodo Kawase, Shikata Jun-ichi, and Hiromasa Ito, “Terahertz wave parametric sources,” J. Phys. D. Appl. Phys. 34, 1-14 (2001).

Nature (1)

R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, “How many-particle interactions develop after ultrafast excitation of an electron-hole plasma,” Nature 414(6861), 286–289 (2001).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

U. Schwarz and M. Maier, “Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements,” Phys. Rev. B Condens. Matter Mater. Phys. 58(2), 766–775 (1998).
[Crossref]

Rev. Sci. Instrum. (1)

A. Sato, K. Kawase, H. Minamide, S. Wada, and H. Ito, “Tabletop terahertz-wave parametric generator using a compact, diode-pumped Nd:YAG laser,” Rev. Sci. Instrum. 72(9), 3501–3504 (2001).
[Crossref]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2014).
[Crossref] [PubMed]

Other (2)

C. M. O’Sullivan and J. A. Murphy, Mid-IR Difference Frequency Generation (Springer, 2003).

S.S. Sussmen, Tunable Light Scattering from Transverse Optical Modes in Lithium Niobate (1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The numerical solution of generated THz intensity with initial conditions of Stokes energy of 20 mJ and 0 mJ.
Fig. 2
Fig. 2 The schematic diagram of the ips-TPG. Inset: the crystal geometry.
Fig. 3
Fig. 3 The measured Stokes wavelength and the output characteristics of the idler wave from the SR-OPO. Inset: the time-domain profiles of the pump and pulse seed waves.
Fig. 4
Fig. 4 The measured THz tunable output characteristics from ips-TPG and SLN TPO.
Fig. 5
Fig. 5 The THz energy attenuation factors of ips-TPG and SLN TPO.
Fig. 6
Fig. 6 (a) The THz output energy of ips-TPG under different pump energy. (b) The THz output energy and threshold energy under different pulse-seed energy.
Fig. 7
Fig. 7 The acceptance angle of THz generation in the ips-TPG. Inset: the acceptance angle at different THz frequency.
Fig. 8
Fig. 8 The THz output stability of ips-TPG over an hour. Inset: the THz output fluctuations under different pulse-seed energies.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E S x = i 2 k S { ( k S 2 ω S 2 c 2 ε S ) E S + ω S 2 c 2 [ ( d 33 + d Q χ Q * ) E P E T * ] + d Q 2 χ Q * | E P | 2 E S } ,
E T x = i 2 k T c o s β { ( k T 2 ω T 2 c 2 ε T ) E T α T E T + ω T 2 c 2 [ ( d 33 + d Q χ Q ) E P E S * ] } ,
{ α T = 2 ω T c I m ( ε T ) 1 / 2 ε T = ε + χ Q χ Q = S 0 ω 0 2 ω 0 2 ω T 2 i ω T Γ 0 .
A T = 10 × log 10 ( E M a x / E T )

Metrics