Abstract

We propose and experimentally demonstrate distributed microwave photonics signal processing over a few-mode fiber link by implementing 4-sample true time delay line operation. The inscription of a set of long period gratings at specific locations along the few-mode fiber allows the excitation of the higher-order modes while adjusting the individual sample group delays and amplitudes that are required for sampled true time delay line behavior. Since solely the injection of the fundamental mode at the few-mode fiber input is required, we render this signal processing system independent of any preceding fiber link that may be required in addition to distribute the signal. We experimentally validate the performance of the implemented true time delay line when applied to radiofrequency signal filtering.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode fiber true time delay lines for distributed radiofrequency signal processing

Rubén Guillem, Sergi García, Javier Madrigal, David Barrera, and Ivana Gasulla
Opt. Express 26(20) 25761-25768 (2018)

Dispersion-engineered multicore fibers for distributed radiofrequency signal processing

Sergi García and Ivana Gasulla
Opt. Express 24(18) 20641-20654 (2016)

Design of heterogeneous multicore fibers as sampled true-time delay lines

Sergi Garcia and Ivana Gasulla
Opt. Lett. 40(4) 621-624 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
    [Crossref]
  2. J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
    [Crossref]
  3. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal procesing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  4. I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
    [Crossref] [PubMed]
  5. S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
    [Crossref] [PubMed]
  6. R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express 26(20), 25761–25768 (2018).
    [Crossref] [PubMed]
  7. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  8. Y. Zhao, Y. Liu, L. Zhang, C. Zhang, J. Wen, and T. Wang, “Mode converter based on the long-period fiber gratings written in the two-mode fiber,” Opt. Express 24(6), 6186–6195 (2016).
    [Crossref] [PubMed]
  9. G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
    [Crossref]
  10. C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
    [Crossref]
  11. I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fussed fiber couplers,” IEEE J. Lightw. Technol. 33(9), 1748–1760 (2015).
    [Crossref]
  12. F. Grassi, J. Mora, B. Ortega, and J. Capmany, “Subcarrier multiplexing tolerant dispersion transmission system employing optical broadband sources,” Opt. Express 17(6), 4740–4751 (2009).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fussed fiber couplers,” IEEE J. Lightw. Technol. 33(9), 1748–1760 (2015).
[Crossref]

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal procesing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

2009 (1)

2000 (2)

C. Dorrer, N. Belabas, J. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17(10), 1795–1802 (2000).
[Crossref]

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

1996 (1)

Bai, G.

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

Barrera, D.

R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express 26(20), 25761–25768 (2018).
[Crossref] [PubMed]

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

Belabas, N.

Bhatia, V.

Capmany, J.

Dorrer, C.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Galve, J. M.

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

García, S.

Gasulla, I.

R. Guillem, S. García, J. Madrigal, D. Barrera, and I. Gasulla, “Few-mode fiber true time delay lines for distributed radiofrequency signal processing,” Opt. Express 26(20), 25761–25768 (2018).
[Crossref] [PubMed]

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

S. García and I. Gasulla, “Dispersion-engineered multicore fibers for distributed radiofrequency signal processing,” Opt. Express 24(18), 20641–20654 (2016).
[Crossref] [PubMed]

I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fussed fiber couplers,” IEEE J. Lightw. Technol. 33(9), 1748–1760 (2015).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal procesing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

Grassi, F.

Guillem, R.

Hervás, J.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

Hwa, T.

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

Joffre, M.

Kahn, J. M.

I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fussed fiber couplers,” IEEE J. Lightw. Technol. 33(9), 1748–1760 (2015).
[Crossref]

Likforman, J.

Liu, Y.

Lloret, J.

Madrigal, J.

Mora, J.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Ortega, B.

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Sales, S.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal procesing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

Sancho, J.

Shun, L.

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

Siu, H.

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

Vengsarkar, A. M.

Wang, T.

Wen, J.

Xiao, D.

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

Zhang, C.

Zhang, L.

Zhao, Y.

IEEE J. Lightw. Technol. (1)

I. Gasulla and J. M. Kahn, “Performance of direct-detection mode-group-division multiplexing using fussed fiber couplers,” IEEE J. Lightw. Technol. 33(9), 1748–1760 (2015).
[Crossref]

IEEE J. Quantum Electron. (1)

J. M. Galve, I. Gasulla, S. Sales, and J. Capmany, “Reconfigurable radio access networks using multicore fibers,” IEEE J. Quantum Electron. 52(1), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. Bai, T. Hwa, H. Siu, L. Shun, and D. Xiao, “Growth of long-period gratings in H2-loaded fiber after 193-nm UV inscription,” IEEE Photonics Technol. Lett. 12(6), 642–644 (2000).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibers,” Nat. Photonics 7(5), 354–362 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sci. Rep. (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(41727), 41727 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 TTDL principle of operation: a) Scheme of the FMF-based TTDL built upon the inscription of 3 LPGs; b) Evolution of the group delay normalized to the first sample group delay (t-t01) of the 4 TTDL samples with the propagation length z. LPG: long period grating.
Fig. 2
Fig. 2 Measured optical spectral response of each LPG in transmission for all the LP modes propagated through the FMF: a) LP01 to LP02 conversion; b) LP01 to LP11 conversion; c) LP11 to LP21 conversion.
Fig. 3
Fig. 3 Experimental setup for MWP signal filtering based on the 4-sample FMF TTDL. BS: broadband source; EDFA: Erbium-doped fiber amplifier; EOM: electrooptic modulator; PC: polarization controller; VDL: variable delay line; VOA: variable optical attenuator.
Fig. 4
Fig. 4 Measured MWP filter transfer function for both scenarios. Black dotted line: theoretical response; green-dashed line: measured response for the TDDL segment (first scenario); red-solid line: measured response for 1-km FMF link + TTDL segment (second scenario).

Tables (1)

Tables Icon

Table 1 Characteristics of the inscribed LPGs

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ n ( λ )= τ n ( λ 0 )+ D n ( λ 0 )( λ λ 0 ),
( t 02 t 01 t 11 t 01 t 21 t 01 )=( τ 02 τ 01 0 0 0 τ 11 τ 01 0 0 τ 11 τ 01 τ 21 τ 11 )( l 02 l 11 l 21 )=( T 2T 3T ).

Metrics