Abstract

A rigorous homogenization theory is developed to characterize the effective conductivity tensor of periodic graphene ribbons. This way, the obtained conductivity simplifies the study of the exotic scattering properties of periodic graphene ribbons. As a typical example, we find that the performance of reflective dichroism from the designed graphene ribbons can be enhanced (up to a maximum linear dichroism of 0.98) when the total internal reflection happens. Moreover, by rotating its optical axis, the functionality of the periodic graphene ribbon can change from an absorber for linearly polarized waves to another absorber for circularly polarized waves (maximum circular dichroism of 0.93). The revealed indispensable property of graphene ribbons in controlling the reflective dichroism indicates their promising wide applications including energy harvesting and optical sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure

Yongkai Wang, Jun Dong, Zhongyu Wang, Shangqi Zhou, Qijing Wang, Qingyan Han, Wei Gao, Kaili Ren, and Jianxia Qi
Opt. Express 27(23) 33869-33879 (2019)

Enhanced magnetic circular dichroism by subradiant plasmonic mode in symmetric graphene oligomers at low static magnetic fields

J. Q. Liu, S. Wu, P. Wang, Q. K. Wang, Y. B. Xie, G. H. Sun, and Y. X. Zhou
Opt. Express 27(2) 567-575 (2019)

Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips [Invited]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù
Opt. Mater. Express 5(10) 2313-2329 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  2. T. Li and J. B. Khurgin, “Hyperbolic metamaterials: beyond the effective medium theory,” Optica 3(12), 1388–1396 (2016).
    [Crossref]
  3. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
    [Crossref] [PubMed]
  4. C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
    [Crossref] [PubMed]
  5. X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
    [Crossref] [PubMed]
  6. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
  8. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
    [Crossref] [PubMed]
  9. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35(11), 1863–1865 (2010).
    [Crossref] [PubMed]
  10. Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
    [Crossref]
  11. A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
    [Crossref] [PubMed]
  12. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  13. J. S. Gomez-Diaz and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
    [Crossref]
  14. C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8(1), 14144 (2017).
    [Crossref] [PubMed]
  15. D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).
  16. F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  17. M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
    [Crossref] [PubMed]
  18. J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
    [Crossref] [PubMed]
  19. J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
    [Crossref]
  20. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
    [Crossref] [PubMed]
  21. E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
    [Crossref]
  22. J. W. You and N. C. Panoiu, “Plasmon-induced nonlinearity enhancement and homogenization of graphene metasurfaces,” Opt. Lett. 44(12), 3030–3033 (2019).
    [Crossref] [PubMed]
  23. J. W. You and N. C. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
    [Crossref] [PubMed]
  24. W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
    [Crossref]
  25. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
    [Crossref] [PubMed]
  26. D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
    [Crossref]
  27. D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Nonlocal response of hyperbolic metasurfaces,” Opt. Express 23(23), 29434–29448 (2015).
    [Crossref] [PubMed]
  28. J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
    [Crossref]
  29. J. A. Kong, Electromagnetic Wave Theory (EMW, 2008).
  30. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
    [Crossref] [PubMed]
  31. L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
    [Crossref]
  32. O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
    [Crossref]
  33. O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
    [Crossref]
  34. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  35. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
    [Crossref]
  36. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
    [PubMed]
  37. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref] [PubMed]
  38. Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
    [Crossref]
  39. L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  40. L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
    [Crossref]
  41. C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
    [Crossref]
  42. R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
    [Crossref]
  43. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]

2019 (1)

2018 (5)

J. W. You and N. C. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
[Crossref] [PubMed]

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
[Crossref]

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

2017 (5)

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8(1), 14144 (2017).
[Crossref] [PubMed]

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

2016 (5)

J. S. Gomez-Diaz and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

T. Li and J. B. Khurgin, “Hyperbolic metamaterials: beyond the effective medium theory,” Optica 3(12), 1388–1396 (2016).
[Crossref]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

2015 (10)

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Nonlocal response of hyperbolic metasurfaces,” Opt. Express 23(23), 29434–29448 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

2014 (3)

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

2013 (5)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

C. Argyropoulos, N. M. Estakhri, F. Monticone, and A. Alù, “Negative refraction, gain and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21(12), 15037–15047 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

2012 (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
[PubMed]

2010 (2)

2008 (2)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

2007 (2)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

2006 (1)

Alekseyev, L. V.

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Alu, A.

J. S. Gomez-Diaz and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

Alù, A.

Argyropoulos, C.

Bai, X.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Barnakov, Y. A.

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Basov, D. N.

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Bogdanov, A. A.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Bonner, C. E.

Bychkov, I. V.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

Cai, W.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Chen, H.

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Correas-Serrano, D.

Cortes, C. L.

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8(1), 14144 (2017).
[Crossref] [PubMed]

de Leon, N. P.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Devlin, R. C.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dibos, A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Dryden, D.

Du, L.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Estakhri, N. M.

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Falkovsky, L.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Fang, Y.

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

Fogler, M. M.

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).

Forati, E.

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

Fullerton, E. E.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Garcia de Abajo, F. J.

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

García de Abajo, F. J.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Gomez-Diaz, J. S.

J. S. Gomez-Diaz and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

D. Correas-Serrano, J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Nonlocal response of hyperbolic metasurfaces,” Opt. Express 23(23), 29434–29448 (2015).
[Crossref] [PubMed]

J. S. Gomez-Diaz, M. Tymchenko, and A. Alu, “Hyperbolic metasurfaces: surface plasmons, light-matter interactions, and physical implementation using graphene strips,” Opt. Mater. Express 5(10), 2313–2329 (2015).
[Crossref]

Goussetis, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Granet, G.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Hanson, G. W.

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

Hao, R.

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

High, A. A.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Huang, W.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Huang, Z.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Iorsh, I. V.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Jacob, Z.

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Jia, H.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Jiang, J.

J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
[Crossref]

Jing, L.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Joannopoulos, J. D.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Käll, M.

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

Kaminer, I.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Kan, J. J.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Khurgin, J. B.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Kuzmin, D. A.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

Li, E.

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Li, H.

Li, T.

Li, X.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Li, Z.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Lin, X.

J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
[Crossref]

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Lioubtchenko, D.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Liu, N.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
[PubMed]

Liu, Y.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Liu, Z.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

López, J. J.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Lu, D.

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Lukin, M. D.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Luukkonen, O.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Ma, W.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Maturi, R.

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Mayy, M.

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Monticone, F.

Narimanov, E.

Narimanov, E. E.

Nataraj, G.

Niu, C.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Noginov, M. A.

Ogier, R.

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

Ovcharenko, A. I.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
[PubMed]

Panoiu, N. C.

Park, H.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Perczel, J.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pershoguba, S.

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Polking, M.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Raisanen, A. V.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Renuka, M.

Rivera, N.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Shavrov, V. G.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

Shen, L.

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Shen, S.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Shen, Y.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Simovski, C.

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Soljacic, M.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Song, M.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

Svedendahl, M.

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

Temnov, V. V.

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

Tian, J.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Tymchenko, M.

Wang, H.

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Wang, Z.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
[PubMed]

Wild, D. S.

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Xia, F.

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

Yakovlev, A. B.

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

Yang, Y.

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Yao, K.

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Yermakov, O. Y.

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

Yin, W.

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

You, J. W.

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Zhan, P.

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Zhang, B.

J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
[Crossref]

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Zhang, X.

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

Zhao, J.

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

Zheng, B.

M. Renuka, X. Lin, Z. Wang, L. Shen, B. Zheng, H. Wang, and H. Chen, “Dispersion engineering of hyperbolic plasmons in bilayer 2D materials,” Opt. Lett. 43(23), 5737–5740 (2018).
[Crossref] [PubMed]

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zhu, G.

ACS Photonics (4)

J. S. Gomez-Diaz and A. Alu, “Flatland Optics with Hyperbolic Metasurfaces,” ACS Photonics 3(12), 2211–2224 (2016).
[Crossref]

F. J. Garcia de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

W. Ma, Z. Huang, X. Bai, P. Zhan, and Y. Liu, “Dual-band light focusing using stacked graphene metasurfaces,” ACS Photonics 4(7), 1770–1775 (2017).
[Crossref]

Z. Wang, H. Jia, K. Yao, W. Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics 3(11), 2096–2101 (2016).
[Crossref]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial Electromagnetic Wave Absorbers,” Adv. Mater. 24(23), 98–120, (2012).
[PubMed]

Appl. Phys. Lett. (4)

Y. Liu and X. Zhang, “Metasurfaces for manipulating surface plasmons,” Appl. Phys. Lett. 103(14), 141101 (2013).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

C. Niu, J. Zhao, L. Du, N. Liu, Z. Wang, W. Huang, and X. Li, “Spatially dispersive dichroism in bianisotropic metamirrors,” Appl. Phys. Lett. 113(26), 261102 (2018).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

O. Luukkonen, C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, “Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches,” IEEE Trans. Antenn. Propag. 56(6), 1624–1632 (2008).
[Crossref]

Laser Photonics Rev. (1)

L. Jing, Z. Wang, R. Maturi, B. Zheng, H. Wang, Y. Yang, L. Shen, R. Hao, W. Yin, E. Li, and H. Chen, “Gradient Chiral Metamirrors for Spin-Selective Anomalous Reflection,” Laser Photonics Rev. 11(6), 1700115 (2017).
[Crossref]

Nano Lett. (1)

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett. 13(3), 1257–1264 (2013).
[Crossref] [PubMed]

Nanophotonics (1)

D. A. Kuzmin, I. V. Bychkov, V. G. Shavrov, and V. V. Temnov, “Plasmonics of magnetic and topological graphene-based nanostructures,” Nanophotonics 7(3), 597–611 (2018).
[Crossref]

Nanotechnology (1)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

C. L. Cortes and Z. Jacob, “Super-Coulombic atom-atom interactions in hyperbolic media,” Nat. Commun. 8(1), 14144 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nat. Nanotechnol. 9(1), 48–53 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Nature (1)

A. A. High, R. C. Devlin, A. Dibos, M. Polking, D. S. Wild, J. Perczel, N. P. de Leon, M. D. Lukin, and H. Park, “Visible-frequency hyperbolic metasurface,” Nature 522(7555), 192–196 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin Perfect Absorbers for Electromagnetic Waves: Theory, Design, and Realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (3)

L. Falkovsky and S. Pershoguba, “Optical far-infrared properties of a graphene monolayer and multilayer,” Phys. Rev. B Condens. Matter Mater. Phys. 76(15), 153410 (2007).
[Crossref]

O. Y. Yermakov, A. I. Ovcharenko, M. Song, A. A. Bogdanov, I. V. Iorsh, and Y. S. Kivshar, “Hybrid waves localized at hyperbolic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 91(23), 235423 (2015).
[Crossref]

E. Forati, G. W. Hanson, A. B. Yakovlev, and A. Alu, “Planar hyperlens based on a modulated graphene monolayer,” Phys. Rev. B Condens. Matter Mater. Phys. 89(8), 081410 (2014).
[Crossref]

Phys. Rev. Lett. (1)

J. S. Gomez-Diaz, M. Tymchenko, and A. Alù, “Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces,” Phys. Rev. Lett. 114(23), 233901 (2015).
[Crossref] [PubMed]

Phys. Rev. X (1)

R. Ogier, Y. Fang, M. Käll, and M. Svedendahl, “Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas,” Phys. Rev. X 5(4), 041019 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Lin, Y. Yang, N. Rivera, J. J. López, Y. Shen, I. Kaminer, H. Chen, B. Zhang, J. D. Joannopoulos, and M. Soljačić, “All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene-boron nitride heterostructures,” Proc. Natl. Acad. Sci. U.S.A. 114(26), 201701830 (2017).
[Crossref] [PubMed]

Research (1)

J. Jiang, X. Lin, and B. Zhang, “Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials,” Research 2018, 2532819 (2018).
[Crossref]

Sci. Rep. (1)

Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu, “Graphene Plasmonic Metasurfaces to Steer Infrared Light,” Sci. Rep. 5(1), 12423 (2015).
[Crossref] [PubMed]

Science (5)

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García de Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349(6244), 165–168 (2015).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

D. N. Basov, M. M. Fogler, and F. J. Garcia de Abajo, “Polaritons in van der Waals materials,” Science 354, 195 (2016).

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321(5891), 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

Other (1)

J. A. Kong, Electromagnetic Wave Theory (EMW, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration of the periodic graphene ribbons under study and its effective surface conductivity tensor.
Fig. 2
Fig. 2 Effective medium analysis of graphene ribbons. The effective conductivity for (a) the p polarization and (b) the s polarization. MET indicates a resonant mode around 18.2 THz. Comparison between the calculated and simulated reflection spectra for (c) p polarization and (d) the s polarization. EF = 0.4 eV.
Fig. 3
Fig. 3 The reflection coefficients of Floquet modes at (a) 14 THz, (b) 16 THz, (c) 18.2 THz, and (d) 20 THz. (e-h) The corresponding transmission coefficients. EF = 0.4 eV.
Fig. 4
Fig. 4 Enhanced reflective linear dichroism via total internal reflection. (a) The schematic illustration of total internal reflection. Reflection spectra for (b) the p polarization and (c) s polarization for graphene ribbons with EF = 0.4 eV. The reflection spectra for (d) p polarization and (e) s polarization at different Fermi levels with a fixed incident angle of 55°.
Fig. 5
Fig. 5 Chiral absorption performance of a general anisotropic conductive layer. The dependence of the absorption on conductivities for (a) RCP and (b) LCP light. (c) The corresponding CD performance. Both the angle of incidence and the rotation angle φ are set to 45°.
Fig. 6
Fig. 6 Enhanced chiral absorption in graphene ribbons. (a) Schematic illustration of the chiral absorption via total internal reflection and rotation of optical axis. Absorption spectra for (b) RCP and (c) LCP light for various values of φ. (d) The corresponding CD spectra. (e) The reflection spectra for φ = 30°. EF = 0.4 eV and the angle of incidence is 45°.
Fig. 7
Fig. 7 Tunability of the enhanced chiral absorption at different Fermi levels. Absorption spectra for (a) LCP and (b) RCP light. (c) CD spectra. The Fermi level EF changes from 0.3 eV to 0.5 eV, φ = 30° and the angle of incidence is 45°.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

E ¯ 1 p = 1 k i ( u ^ k z z ^ k u ) e i k ¯ i r ¯ + 1 k i n R n pp ( u ^ k zn r z ^ k un ) e i k ¯ rn r ¯ ,
H ¯ 1 p = 1 η i v ^ e i k ¯ i r ¯ + 1 η i n R n pp v ^ e i k ¯ rn r ¯ .
E ¯ 2 p = 1 k t n T n pp ( u ^ k zn t z ^ k un ) e i k ¯ tn r ¯ ,
H ¯ 2 p = 1 η t n T n pp v ^ e i k ¯ tn r ¯ .
{ z ^ ×( H ¯ 2 p H ¯ 1 p )= 1 2 u ^ σ s ( E 1u p + E 2u p ),| u |W/2 z ^ ×( H ¯ 2 p H ¯ 1 p )=0,W/2 <| u |L/2 ,
δ m0 + R m pp k zm r k z T m pp k zm t k i k z k t =0,
δ m0 + R m pp η i η t T m pp = W L η i σ s n T n pp k zn t k t sinc[ ( m+n )W L ] .
δ 00 + R 0 pp η i η t T 0 pp = η i σ u eff T 0 pp k z0 t k t ,
σ u eff = W L σ s n T n pp k zn t T 0 pp k z0 t sinc[ nW L ] .
E ¯ 1 s = v ^ e i k ¯ i r ¯ n R n ss v ^ e i k ¯ rn r ¯ ,
H ¯ 1 s = 1 η i k i ( u ^ k z z ^ k u ) e i k ¯ i r ¯ + 1 η i k i n R n ss ( u ^ k zn r z ^ k un ) e i k ¯ rn r ¯ ,
E ¯ 2 s = n R n ss v ^ e i k ¯ tn r ¯ ,
H ¯ 2 s = 1 η t k t n T n ss ( u ^ k zn t z ^ k un ) e i k ¯ tn r ¯ .
δ m0 + R m ss T m ss =0,
δ m0 + R m ss k zm r k z T m ss η i k zm t k i η t k z k t = W L η i σ s n T n ss sinc[ ( m+n )W L ] .
σ v eff = W L σ s n T n ss T 0 ss sinc[ nW L ] .
σ s ( ω )= i2 e 2 k B T π 2 ( ω+i τ 1 ) ln[ 2cosh( E F 2 k B T ) ] + e 2 4 [ 1 2 + 1 π arctan( ω2 E F 2 k B T ) i 2π ln ( ω+2 E F ) 2 ( ω2 E F ) 2 +4 ( k B T ) 2 ],
σ u eff = L σ s σ C W σ C +( LW ) σ s , σ v eff = σ s W L ,
σ ¯ ¯ =[ σ xx σ xy σ yx σ yy ]=[ σ u eff cos 2 φ+ σ v eff sin 2 φ ( σ v eff σ u eff )sinφcosφ ( σ v eff σ u eff )sinφcosφ σ u eff sin 2 φ+ σ v eff cos 2 φ ].
r pp = ( σ xx + Y 2 p Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
r sp = Y 1 s Y 1 p σ yx ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
r ps = Y 1 p Y 1 s σ xy ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
r ss = ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s Y 1 s ) σ xy σ yx ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
t pp = 2 Y 2 p Y 1 p ( σ yy + Y 2 s + Y 1 s ) ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
t sp = 2 Y 2 s Y 1 p σ yx ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
t ps = 2 Y 2 p Y 1 s σ yx ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx ,
t ss = 2 Y 2 s Y 1 s ( σ xx + Y 2 p + Y 1 p ) ( σ xx + Y 2 p + Y 1 p )( σ yy + Y 2 s + Y 1 s ) σ xy σ yx .
R=[ r pp r ps r sp r ss ],T=[ t pp t ps t sp t ss ].
R circ =[ r RR r RL r LR r LL ]= 1 2 [ r pp r ss +i( r ps + r sp ) r pp + r ss i( r ps r sp ) r pp + r ss +i( r ps r sp ) r pp r ss i( r ps + r sp ) ],
T circ =[ t RR t RL t LR t LL ]= 1 2 [ t pp + t ss +i( t ps t sp ) t pp t ss i( t ps + t sp ) t pp t ss +i( t ps + t sp ) t pp + t ss i( t ps t sp ) ].

Metrics