Abstract

A self-temperature-calibrated gas pressure sensor with a sandwich structure made of single-mode fiber (SMF)-hollow core fiber (HCF)-SMF is proposed and experimentally demonstrated. A Fabry–Perot interferometer (FPI) is formed by the SMF-HCF-SMF structure along the axial direction, and an antiresonant reflecting optical waveguide (ARROW) is formed by the ring-cladding of the HCF along the radial direction. A micro-channel is drilled on the ring-cladding of the HCF using a femtosecond laser to facilitate air entering/exiting the HCF. The FPI functions as the pressure sensor, and the ARROW functions as the temperature sensor. The initial wavelength and pressure sensitivity of the FPI can be calibrated from the temperature obtained by measuring the optical thickness of the ARROW. The experimental results show that the ARROW exhibits a temperature sensitivity of ~0.584 nm/°C, and the pressure sensitivity of the FPI ranges from 3.884 to 0.919 nm/MPa, within the temperature range of 37–1007 °C. The simplicity and durability of the sensor make it suitable for reliable gas pressure measurement in high-temperature environments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Maoxiang Hou, Feng Zhu, Ying Wang, Yiping Wang, Changrui Liao, Shen Liu, and Peixiang Lu
Opt. Express 24(24) 27890-27898 (2016)

Fiber-optic Fabry–Perot pressure sensor based on low-temperature co-fired ceramic technology for high-temperature applications

Jia Liu, Pinggang Jia, Huixin Zhang, Xiaodan Tian, Hao Liang, Yingping Hong, Ting Liang, Wenyi Liu, and Jijun Xiong
Appl. Opt. 57(15) 4211-4215 (2018)

Fiber-tip gas pressure sensor based on dual capillaries

Ben Xu, Chao Wang, D. N. Wang, Yaming Liu, and Yi Li
Opt. Express 23(18) 23484-23492 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Liu and M. Han, “Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer,” Opt. Lett. 40(11), 2461–2464 (2015).
    [Crossref] [PubMed]
  2. Y. Z. Zhu, K. L. Cooper, G. R. Pickrell, and A. B. Wang, “High-temperature fiber-tip pressure sensor,” J. Lightwave Technol. 24(2), 861–869 (2006).
    [Crossref]
  3. S. Watson, M. J. Gander, W. N. MacPherson, J. S. Barton, J. D. C. Jones, T. Klotzbuecher, T. Braune, J. Ott, and F. Schmitz, “Laser-machined fibers as Fabry-Perot pressure sensors,” Appl. Opt. 45(22), 5590–5596 (2006).
    [Crossref] [PubMed]
  4. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [Crossref] [PubMed]
  5. S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
    [Crossref]
  6. B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
    [Crossref] [PubMed]
  7. B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
    [Crossref]
  8. Z. Zhang, J. He, Q. Dong, Z. Bai, C. Liao, Y. Wang, S. Liu, K. Guo, and Y. Wang, “Diaphragm-free gas-pressure sensor probe based on hollow-core photonic bandgap fiber,” Opt. Lett. 43(13), 3017–3020 (2018).
    [Crossref] [PubMed]
  9. M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
    [Crossref] [PubMed]
  10. Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
    [Crossref]
  11. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [Crossref] [PubMed]
  12. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref] [PubMed]
  13. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  14. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  15. R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
    [Crossref] [PubMed]
  16. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
    [Crossref]
  17. N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
    [Crossref]
  18. H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
    [Crossref]
  19. Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
    [Crossref] [PubMed]
  20. X. Zhang, H. Pan, H. Bai, M. Yan, J. Wang, C. Deng, and T. Wang, “Transition of Fabry-Perot and antiresonant mechanisms via a SMF-capillary-SMF structure,” Opt. Lett. 43(10), 2268–2271 (2018).
    [Crossref] [PubMed]
  21. K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
    [Crossref]
  22. Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
    [Crossref]
  23. Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 (2008).
    [Crossref] [PubMed]

2018 (6)

Z. Zhang, J. He, Q. Dong, Z. Bai, C. Liao, Y. Wang, S. Liu, K. Guo, and Y. Wang, “Diaphragm-free gas-pressure sensor probe based on hollow-core photonic bandgap fiber,” Opt. Lett. 43(13), 3017–3020 (2018).
[Crossref] [PubMed]

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref] [PubMed]

X. Zhang, H. Pan, H. Bai, M. Yan, J. Wang, C. Deng, and T. Wang, “Transition of Fabry-Perot and antiresonant mechanisms via a SMF-capillary-SMF structure,” Opt. Lett. 43(10), 2268–2271 (2018).
[Crossref] [PubMed]

2017 (1)

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

2016 (2)

M. Hou, F. Zhu, Y. Wang, Y. Wang, C. Liao, S. Liu, and P. Lu, “Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing,” Opt. Express 24(24), 27890–27898 (2016).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

2015 (3)

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
[Crossref] [PubMed]

G. Liu and M. Han, “Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer,” Opt. Lett. 40(11), 2461–2464 (2015).
[Crossref] [PubMed]

2014 (2)

S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

2013 (2)

2008 (2)

2007 (1)

2006 (2)

2002 (1)

1993 (1)

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Abeeluck, A. K.

Bai, H.

Bai, Z.

Barton, J. S.

Belardi, W.

Birch, K. P.

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Braune, T.

Burger, S.

Cheng, J.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Coelho, L.

S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
[Crossref]

Cooper, K. L.

Cui, Y.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Deng, C.

Dong, N. N.

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Dong, Q.

Downs, M. J.

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Du, B.

Eggleton, B. J.

Frazao, O.

S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
[Crossref]

Gander, M. J.

Gao, H. C.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Gao, R.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Guo, K.

Guo, Y.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Han, M.

He, J.

Headley, C.

Hou, M.

Hu, J.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Huang, J.

Jia, D. G.

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

Jia, J. S.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Jiang, C.

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

Jiang, L.

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Jiang, Y.

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Appl. Opt. 47(7), 925–932 (2008).
[Crossref] [PubMed]

Jones, J. D. C.

Kaur, A.

Klotzbuecher, T.

Knight, J. C.

Lan, X.

Li, Y.

Liao, C.

Litchinitser, N. M.

Liu, G.

Liu, S.

Liu, Y.

Liu, Y. M.

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

Lu, D.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Lu, P.

MacPherson, W. N.

Ott, J.

Pan, H.

Pearce, G. J.

Pickrell, G. R.

Poulton, C. G.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Qiu, Q.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Schmitz, F.

Shi, S. J.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Silva, S.

S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
[Crossref]

St J Russell, P.

Su, J.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Wang, A. B.

Wang, C.

Wang, D. N.

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
[Crossref] [PubMed]

Wang, J.

Wang, P.

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Wang, S. M.

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Wang, T.

Wang, Y.

Wang, Y. X.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Wang, Z. K.

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

Wang, Z. Y.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Watson, S.

Wiederhecker, G. S.

Xiao, H.

Xu, B.

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

B. Xu, C. Wang, D. N. Wang, Y. Liu, and Y. Li, “Fiber-tip gas pressure sensor based on dual capillaries,” Opt. Express 23(18), 23484–23492 (2015).
[Crossref] [PubMed]

Yan, M.

Yang, Y. B.

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

Yu, Z. F.

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Yuan, L.

Zhang, F.

Zhang, L. C.

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

Zhang, X.

Zhang, Y.

Zhang, Z.

Zhao, Y.

Zheltikov, A. M.

Zhu, F.

Zhu, Y. Z.

Appl. Opt. (3)

IEEE Photonics J. (1)

B. Xu, Y. M. Liu, D. N. Wang, D. G. Jia, and C. Jiang, “Optical fiber Fabry–Perot interferometer based on an air cavity for gas pressure sensing,” IEEE Photonics J. 9(2), 7102309 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. N. Dong, S. M. Wang, L. Jiang, Y. Jiang, P. Wang, and L. C. Zhang, “Pressure and Temperature Sensor Based on Graphene Diaphragm and Fiber Bragg Gratings,” IEEE Photonics Technol. Lett. 30(5), 431–434 (2018).
[Crossref]

IEEE Sens. J. (1)

H. C. Gao, Y. Jiang, Y. Cui, L. C. Zhang, J. S. Jia, and J. Hu, “Dual-cavity Fabry-Perot interferometric sensors for the simultaneous measurement of high temperature and high pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

Y. Guo, Z. Y. Wang, Q. Qiu, J. Su, Y. X. Wang, S. J. Shi, and Z. F. Yu, “Theoretical and experimental investigations on the temperature dependence of the refractive index of amorphous silica,” J. Non-Cryst. Solids 429, 198–201 (2015).
[Crossref]

Measurement (1)

S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Perot interferometer for pressure sensing in different gaseous environments,” Measurement 47, 418–421 (2014).
[Crossref]

Metrologia (1)

K. P. Birch and M. J. Downs, “An updated Edlen equation for the refractive index of air,” Metrologia 30(3), 155–162 (1993).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

Y. B. Yang, D. N. Wang, B. Xu, and Z. K. Wang, “Optical fiber tip interferometer gas pressure sensor based on anti-resonant reflecting guidance mechanism,” Opt. Fiber Technol. 42, 11–17 (2018).
[Crossref]

Opt. Lett. (7)

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
[Crossref] [PubMed]

X. Zhang, H. Pan, H. Bai, M. Yan, J. Wang, C. Deng, and T. Wang, “Transition of Fabry-Perot and antiresonant mechanisms via a SMF-capillary-SMF structure,” Opt. Lett. 43(10), 2268–2271 (2018).
[Crossref] [PubMed]

Z. Zhang, J. He, Q. Dong, Z. Bai, C. Liao, Y. Wang, S. Liu, K. Guo, and Y. Wang, “Diaphragm-free gas-pressure sensor probe based on hollow-core photonic bandgap fiber,” Opt. Lett. 43(13), 3017–3020 (2018).
[Crossref] [PubMed]

Z. Zhang, J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, “Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers,” Opt. Lett. 43(24), 6009–6012 (2018).
[Crossref] [PubMed]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref] [PubMed]

R. Gao, Y. Jiang, and Y. Zhao, “Magnetic field sensor based on anti-resonant reflecting guidance in the magnetic gel-coated hollow core fiber,” Opt. Lett. 39(21), 6293–6296 (2014).
[Crossref] [PubMed]

G. Liu and M. Han, “Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer,” Opt. Lett. 40(11), 2461–2464 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuators B Chem. 222, 618–624 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the gas pressure sensor, (b) top view of the HCF with a micro-channel fabricated using the fs laser, and (c) side view of the interface of HCF/SMF.
Fig. 2
Fig. 2 Reflected spectra and their envelopes for sensors with different HCF lengths: (a) 337 μm, (b) 556 μm, (c) 1260 μm, and (d) 1468 μm.
Fig. 3
Fig. 3 Temperature dependences of (a) f (T, Ps) and (b) g (T).
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 Temperature properties of (a) the peak wavelength of the FPI and (b) the optical thickness of the ARROW.
Fig. 6
Fig. 6 Peak wavelength of the FPI, antiresonant wavelength and optical thickness of the ARROW with respect to the gas pressure.
Fig. 7
Fig. 7 (a) Peak wavelength shift and (b) the pressure sensitivity of the FPI under different temperatures.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

L C = n 1 2 + n 2 2 n 3 2 ( r n 3 2 n 2 2 + 2d n 3 2 n 1 2 ),
λ FP =2 n 1 l/ m FP ,
n 1 (T,P)=1+ aP 1+bT ,
l(T)= l 0 (1+ α l T),
λ FP (T,P)= 2 l 0 m FP (1+ aP 1+bT )(1+ α l T)= 2 l 0 m FP f(T,P),
S FP (T)= λ FP P = 2a l 0 m FP 1+ α l T 1+bT = 2a l 0 m FP g(T),
λ AR =2d n 2 2 n 1 2 / m AR ,
n 2 (T)= n 20 + α n T,
d(T)= d 0 (1+ α l T),
L AR (T)= n 2 (T)d(T)=( n 20 + α n T) d 0 (1+ α l T).
S AR = L AR T = d 0 ( α n + n 20 α l +2 α n α l T).
T= T R + L AR (T) L AR ( T R ) S AR ,
L AR (T)= 1 2 { m FP λ FP /(l/d) } 2 + { m AR λ AR } 2 .
L AR = ( m FP λ FP 2 l 0 / d 0 ) 2 + ( m AR λ AR 2 ) 2 = (27.384 λ FP ) 2 + (28.5 λ AR ) 2 .
P= P S + λ (T,P) FP λ (T, P S ) FP S FP (T) .

Metrics