Abstract

We propose and investigate a new type of photonic crystal (PhC) cavity for integrated quantum photonics, which provides tailored optical modes with both confined and extended spatial components. The structures consist of elongated PhC cavities in which the effective index of refraction is varied quasi-linearly along their axis, implemented by systematic lateral shifts of the PhC holes. The confined modes have approximately Airy-function envelopes, exhibiting single peaks and extended tails, which is useful for optimizing single photon extraction and transmission in integrated quantum photonic devices. The measured spectrally resolved near-field patterns of such devices show the expected spatial and resonance wavelength behavior, in agreement with numerical simulations of the Airy-Bloch modes. The effects of fabrication-induced disorder on the mode features are also analyzed and discussed. Selective excitation of specific Airy-Bloch modes using integrated, site-controlled quantum dots as localized light sources is demonstrated. Based on the tilted-potential cavity, multiple-QD single photon emitters exploiting wavelength division multiplexing are proposed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Waveguide-coupled photonic crystal cavity for quantum dot spin readout

R. J. Coles, N. Prtljaga, B. Royall, I. J. Luxmoore, A. M. Fox, and M. S. Skolnick
Opt. Express 22(3) 2376-2385 (2014)

Optical fabrication and characterisation of SU-8 disk photonic waveguide heterostructure cavities

Luke P. Nuttall, Frederic S. F. Brossard, Stephen A. Lennon, Benjamin P. L. Reid, Jiang Wu, Jonathan Griffiths, and Robert A. Taylor
Opt. Express 25(20) 24615-24622 (2017)

Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity

Yanhui Zhao, Li-Heng Chen, and Xue-Hua Wang
Opt. Express 27(15) 20211-20220 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
    [Crossref]
  2. M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
    [Crossref]
  3. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
    [Crossref]
  4. S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
    [Crossref]
  5. H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
    [Crossref]
  6. D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
    [Crossref]
  7. P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
    [Crossref]
  8. R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
    [Crossref]
  9. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
    [Crossref]
  10. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
    [Crossref]
  11. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
    [Crossref]
  12. B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
    [Crossref]
  13. B. Rigal: Thesis 8304: Site-controlled quantum dots integrated with photonic crystal waveguides and cavities (EPFL, 2018).
  14. K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
    [Crossref]
  15. L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Addison-Wesley, 1958).
  16. M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
    [Crossref]
  17. P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
    [Crossref]
  18. I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
    [Crossref]
  19. A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
    [Crossref]
  20. B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
    [Crossref]
  21. V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83(8), 085301 (2011).
    [Crossref]
  22. B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
    [Crossref]
  23. A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
    [Crossref]
  24. S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25(5), 4598–4606 (2017).
    [Crossref]
  25. T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
    [Crossref]
  26. S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
    [Crossref]
  27. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
    [Crossref]

2018 (2)

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

2017 (4)

S. Sokolov, J. Lian, E. Yüce, S. Combrié, A. De Rossi, and A. P. Mosk, “Tuning out disorder-induced localization in nanophotonic cavity arrays,” Opt. Express 25(5), 4598–4606 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

2016 (2)

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

2015 (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

2014 (1)

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

2013 (3)

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

2012 (1)

2011 (2)

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83(8), 085301 (2011).
[Crossref]

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

2010 (1)

2009 (2)

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

2008 (1)

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

2007 (2)

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

2005 (1)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

2002 (1)

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Allard, M.

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

Arakawa, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Arcari, M.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Asano, T.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Atlasov, K. A.

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Beetz, J.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Biasiol, G.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Charbonneau-Lefort, M.

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

Combrié, S.

De Rossi, A.

Dietrich, C.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Drahi, D.

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

Dwir, B.

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Englund, D.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Faraon, A.

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Felici, M.

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Fiore, A.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Fushman, I.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

Gaggero, A.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Gallo, P.

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Hoang, T.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Hoang, T. B.

Höfling, S.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Istrate, E.

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

Jahanmirinejad, S.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Jarlov, C.

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

Javadi, A.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Joanesarson, K.

Kamp, M.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Kapon, E.

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Karlsson, K. F.

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Kim, H.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

Konoike, R.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Kulkova, I.

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

Kulkova, I. V.

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

Landau, L.

L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Addison-Wesley, 1958).

Lee, E.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Leoni, R.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Lermer, M.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Leuenberger, M. N.

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

Li, L.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Lian, J.

Lifshitz, E.

L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Addison-Wesley, 1958).

Lindskov Hansen, S.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Linfield, E.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Liu, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Lyasota, A.

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Mattioli, F.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Midolo, L.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelength,” Opt. Express 20(19), 21758–21765 (2012).
[Crossref]

Mohan, A.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Mosk, A. P.

Nakadai, M.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Nakagawa, H.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Noda, S.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Pagliano, F.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Poone, J.

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

Poor, S. F.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Rigal, B.

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

B. Rigal: Thesis 8304: Site-controlled quantum dots integrated with photonic crystal waveguides and cavities (EPFL, 2018).

Rudra, A.

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

B. Rigal, K. Joanesarson, A. Lyasota, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, and E. Kapon, “Propagation losses in photonic crystal waveguides: effects of band tail absorption and waveguide dispersion,” Opt. Express 25(23), 28908 (2017).
[Crossref]

K. A. Atlasov, M. Felici, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “1D photonic band formation and photon localization in finite-size photonic-crystal waveguides,” Opt. Express 18(1), 117–122 (2010).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Sahin, D.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Sargent, E. H.

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

Savona, V.

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83(8), 085301 (2011).
[Crossref]

Schoenfeld, W. V.

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

Schouwenberg, J.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Seigneur, H. P.

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Sokolov, S.

Söllner, I.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Solomon, G. S.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

Song, J.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Sorba, L.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Sun, S.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

Surrente, A.

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

Tanaka, Y.

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Thompson, M. G.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Thyrrestrup, H.

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Van Otten, F.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

Vuckovic, J.

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Waks, E.

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Weed, M.

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

Xia, T.

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

Yamamoto, Y.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Yüce, E.

Zhang, B.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007).
[Crossref]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

Zhou, Z.

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

Adv. OptoElectron. (1)

H. P. Seigneur, M. Weed, M. N. Leuenberger, and W. V. Schoenfeld, “Controlled On-Chip Single-Photon Transfer Using Photonic Crystal Coupled-Cavity Waveguides,” Adv. OptoElectron. 2011, 1–13 (2011).
[Crossref]

Appl. Phys. Lett. (8)

D. Sahin, A. Gaggero, Z. Zhou, S. Jahanmirinejad, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide photon-number-resolving detectors for quantum photonic integrated circuits,” Appl. Phys. Lett. 103(11), 111116 (2013).
[Crossref]

S. F. Poor, T. Hoang, L. Midolo, C. Dietrich, L. Li, E. Linfield, J. Schouwenberg, T. Xia, F. Pagliano, F. Van Otten, and A. Fiore, “Efficient coupling of single photons to ridge-waveguide photonic integrated circuits,” Appl. Phys. Lett. 102(13), 131105 (2013).
[Crossref]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, “Efficient photonic crystal cavity-waveguide couplers,” Appl. Phys. Lett. 90(7), 073102 (2007).
[Crossref]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membranes cavities,” Appl. Phys. Lett. 92(26), 263101 (2008).
[Crossref]

A. Surrente, M. Felici, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Dense arrays of site-controlled quantum dots with tailored wavelength: Growth mechanisms and optical properties,” Appl. Phys. Lett. 111(22), 221102 (2017).
[Crossref]

A. Faraon and J. Vučković, “Local temperature control of photonic crystal devices via micron scale electrical heaters,” Appl. Phys. Lett. 95(4), 043102 (2009).
[Crossref]

S. Sun, H. Kim, G. S. Solomon, and E. Waks, “Strain tuning of a quantum dot strongly coupled to a photonic crystal cavity,” Appl. Phys. Lett. 103(15), 151102 (2013).
[Crossref]

B. Rigal, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Single photon extraction and propagation in photonic crystal waveguides incorporating site-controlled quantum dots,” Appl. Phys. Lett. 112(5), 051105 (2018).
[Crossref]

J. Appl. Phys. (2)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1-xAs below the band gap: Accurate determination and empirical modeling,” J. Appl. Phys. 87(11), 7825–7837 (2000).
[Crossref]

B. Rigal, D. Drahi, C. Jarlov, B. Dwir, A. Rudra, I. Kulkova, A. Lyasota, and E. Kapon, “Probing disorder and mode localization in photonic crystal cavities using site-controlled quantum dots,” J. Appl. Phys. 123(4), 043109 (2018).
[Crossref]

J. Cryst. Growth (1)

I. V. Kulkova, A. Lyasota, C. Jarlov, B. Rigal, A. Rudra, B. Dwir, and E. Kapon, “Emission wavelength control of ordered arrays of InGaAs/GaAs quantum dots,” J. Cryst. Growth 464, 69–74 (2017).
[Crossref]

Laser Photonics Rev. (1)

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Nat. Photonics (1)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009).
[Crossref]

Opt. Express (5)

Phys. Rev. B (2)

M. Charbonneau-Lefort, E. Istrate, M. Allard, J. Poone, and E. H. Sargent, “Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture,” Phys. Rev. B 65(12), 125318 (2002).
[Crossref]

V. Savona, “Electromagnetic modes of a disordered photonic crystal,” Phys. Rev. B 83(8), 085301 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005).
[Crossref]

M. Arcari, I. Söllner, A. Javadi, S. Lindskov Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl, “Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide,” Phys. Rev. Lett. 113(9), 093603 (2014).
[Crossref]

Rev. Mod. Phys. (1)

P. Lodahl, S. Mahmoodian, and S. Stobbe, “Interfacing single photons and single quantum dots with photonic nanostructures,” Rev. Mod. Phys. 87(2), 347–400 (2015).
[Crossref]

Sci. Adv. (1)

R. Konoike, H. Nakagawa, M. Nakadai, T. Asano, Y. Tanaka, and S. Noda, “On-demand transfer of trapped photons on a chip,” Sci. Adv. 2(5), e1501690 (2016).
[Crossref]

Other (2)

L. Landau and E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Addison-Wesley, 1958).

B. Rigal: Thesis 8304: Site-controlled quantum dots integrated with photonic crystal waveguides and cavities (EPFL, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic top-view illustration of the tilted-index GaAs membrane cavity (bottom) and its mode effective index variation, also showing the resonant mode energies (top). (b) Scanning electron microscope top-view images of a fabricated structure, with magnified view of the two cavity edges. Designed smax=30 nm.
Fig. 2.
Fig. 2. Numerical simulation of the near-field intensity distributions of the lower-energy modes in a tilted-index cavity. (a) Energy-position plane presentation, with mode intensity integrated in the y-direction; upper panel shows the intensity distribution of the mode in frame in the x-y plane. (b) Spatial intensity along x of the first ten confined modes. Vertical dash-dot lines mark the left and right boundaries of the cavity. Parameters used: smax=20 nm, pitch a = 225 nm, holes radii r = 65.8 nm, membrane thickness t = 250 nm, center effective index of slab neff.slab=3.146. Dash-dot lines mark the edges of the cavity, dashed lines show linear approximations of the shifts of main lobe peak positions with mode energy.
Fig. 3.
Fig. 3. Simulated and measured spectrally-resolved near-field patterns of tilted-index cavities with smax=10, 20 and 30nm: simulated without disorder (left column); measured (center column); simulated with disorder (right column). Brightness scale for measured patterns corresponds to intensity (linear scales). Upper panel shows the experimental pumping arrangement. Dash-dot lines mark the left and right boundaries of the cavity. T = 10 K, excitation power (density) Pexc.=2 mW (∼2.5 kW/cm2).
Fig. 4.
Fig. 4. Mode features of the tilted-cavity structure with smax=30 nm (T = 10 K, Pexc.=2 mW (∼2.5 kW/cm2). (a) Left panel: quality-factors and polarization-resolved spectra; right panel: enlarged spectrally and spatially resolved mode patterns. See Fig. 1 for definition of H- and V-polarizations. (b) Comparisons of measured and simulated near field patterns of the lowest energy Airy-Bloch modes. Image: measured spectrally-resolved intensity patterns. Dotted lines: measured (normalized) x-profiles obtained directly from the energy-position plots. solid line: normalized simulated near-field patterns, intensity integrated along the y-direction for r = 66.5 nm. Calculated modes are vertically shifted to fit mode energies.
Fig. 5.
Fig. 5. Comparison of measured and simulated slopes dE/dx of the Airy-Bloch mode main lobe positions versus maximum hole shift smax. Red circles: experiment; shaded areas correspond to the statistical 1, 2, and 3σ variations of slopes measured from several structures and ± 1, 2, 3 nm uncertainty in actual smax values. Blue squares: simulations including disorder; shaded areas correspond to the statistical 1, 2, 3 variations e of slopes extracted from simulations including both σr=1 nm and σa=1 nm for Gaussian distributions of hole radii and positions. Solid lines are linear fits to the corresponding symbols. Green triangles: slope values extracted from simulations without disorder; error bars correspond to 10% percent uncertainty in parameters. Solid green lines: linear for smax=10-15 nm and smax=15-30 nm. Right column: energy-position mode patterns of selected corresponding measurements and simulations indicating the main lobe positions; smax=20 nm.
Fig. 6.
Fig. 6. Selective excitation of Airy-Bloch modes using single, site-controlled QDs placed at specific positions along the tilted-index cavities (smax=20 nm, r≈58 nm). Upper panel: schematics illustration of the cavity-QD system. (a) and (b): energy-position plots of mode patterns for Pexc.=2 mW (∼2.5 kW/cm2) and Pexc.=10µW (∼12.5W/cm2). T = 10 K. White curves show simulated Airy-Bloch modes (smax=20 nm, r = 65.2 nm, t = 250 nm, neff.slab=3.14, no disorder). Vertical orange and green dash-dot lines mark positions of the two QDs. Dashed orange and green boxes specify the s-shell emissions of, respectively, QDA and QDB.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ E E Δ n e f f . s l a b n e f f . s l a b ,
E ( c o r r e c t . ) ( λ ) E ( 0 ) ( λ 0 ) ( n e f f . s l a b ( λ ) n e f f . s l a b ( λ 0 ) n e f f . s l a b ( λ 0 ) ) E ( 0 ) ( λ 0 ) .

Metrics