Abstract

We experimentally demonstrate the first use of 1550-nm InAs/GaAs quantum dot semiconductor saturable absorber mirror (QD-SESAM) in the dual-wavelength passively Q-switched (QS) erbium doped fiber (EDF) laser. The dual-wavelength QS lasing was obtained at a pump threshold of 180 mW with the average output power of 2.2 mW and the spacing between the two lasing wavelengths is 14 nm. A large absorption ranging from 1520 to 1590 nm has been realized when no substrate rotation was employed during the molecular beam epitaxy growth of the QD-SESAM indicating the potential to generate a 60 nm spacing of the dual-wavelength QS lasing peaks by changing the positions in the QD-SESAM and replacing EDF by co-doped fiber as gain medium. These results have provided a new opportunity towards achieving the stable and wide wavelength-tunable dual-modes fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InAs/GaAs quantum-dot saturable absorbers for diode-pumped passively Q-switched Nd-doped 1.3-µm lasers

H. C. Lai, A. Li, K. W. Su, M. L. Ku, Y. F. Chen, and K. F. Huang
Opt. Lett. 30(5) 480-482 (2005)

1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates

Ting Wang, Huiyun Liu, Andrew Lee, Francesca Pozzi, and Alwyn Seeds
Opt. Express 19(12) 11381-11386 (2011)

10  GHz pulse repetition rate Er:Yb:glass laser modelocked with quantum dot semiconductor saturable absorber mirror

B. Resan, S. Kurmulis, Z. Y. Zhang, A. E. H. Oehler, V. Markovic, M. Mangold, T. Südmeyer, U. Keller, R. A. Hogg, and K. J. Weingarten
Appl. Opt. 55(14) 3776-3780 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, K. Zhong, J. L. Mei, C. Liu, J. Shi, X. Ding, D. G. Xu, W. Shi, and J. Q. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Opt. Express 25(25), 31988–31996 (2017).
    [Crossref]
  2. Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, L. Yu, and J. Bai, “946 nm Nd:YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21312 (2017).
    [Crossref]
  3. J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
    [Crossref]
  4. A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
    [Crossref]
  5. Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
    [Crossref]
  6. M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
    [Crossref]
  7. H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
    [Crossref]
  8. J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
    [Crossref]
  9. M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
    [Crossref]
  10. Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
    [Crossref]
  11. Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
    [Crossref]
  12. Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
    [Crossref]
  13. S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
    [Crossref]
  14. Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
    [Crossref]
  15. L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
    [Crossref]
  16. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
    [Crossref]
  17. C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
    [Crossref]
  18. T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.
  19. J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
    [Crossref]
  20. L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
    [Crossref]
  21. M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
    [Crossref]
  22. J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
    [Crossref]
  23. N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
    [Crossref]
  24. L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
    [Crossref]
  25. Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
    [Crossref]
  26. E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
    [Crossref]
  27. G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
    [Crossref]
  28. I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
    [Crossref]
  29. K. W. Su, H. C. Lai, A. Li, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorber for a diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 30(12), 1482–1484 (2005).
    [Crossref]
  30. C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
    [Crossref]
  31. Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
    [Crossref]
  32. A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
    [Crossref]
  33. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
    [Crossref]
  34. Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
    [Crossref]
  35. C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
    [Crossref]
  36. X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
    [Crossref]
  37. Y. Tang, X. Yu, X. Li, Z. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Lett. 39(3), 614–617 (2014).
    [Crossref]
  38. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [Crossref]
  39. D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
    [Crossref]
  40. E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
    [Crossref]
  41. L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
    [Crossref]
  42. Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
    [Crossref]
  43. J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
    [Crossref]
  44. G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
    [Crossref]

2019 (3)

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

2018 (4)

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

2017 (3)

2016 (5)

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

2015 (1)

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

2014 (3)

2013 (1)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

2012 (2)

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

D. Mao and H. Lu, “Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime,” J. Opt. Soc. Am. B 29(10), 2819–2826 (2012).
[Crossref]

2011 (4)

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

2010 (5)

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

2008 (2)

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

2007 (1)

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

2006 (2)

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

2005 (3)

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

K. W. Su, H. C. Lai, A. Li, Y. F. Chen, and K. F. Huang, “InAs/GaAs quantum-dot saturable absorber for a diode-pumped passively mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 30(12), 1482–1484 (2005).
[Crossref]

2004 (2)

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

2003 (1)

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

1997 (1)

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Ahmad, H.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Akiyama, T.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Alaskar, Y.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Albadri, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Alcock, J.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Allegri, P.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Alshaibani, S.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Alyamani, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Arakawa, Y.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Avanzini, V.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Babar, I. M.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Bai, B.

Bai, J.

Bai, Y.

Barrera, D.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Beveratos, A.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Bhattacharya, P.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Bian, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Bimberg, D.

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Blokhin, S. A.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Blumin, M.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Bocchi, C.

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

Bosacchi, A.

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Cappelluti, F.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Chen, H. M.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Chen, Y.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Chen, Y. F.

Chen, Y. H.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Cheng, X.

Childs, D.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Damilano, B.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

DeCuir, E. A.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Dianov, E.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Ding, X.

Dorogan, V. G.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Duboz, J. Y.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Dvoyrin, V. V.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Ebe, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Egorov, A. Y.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Ekawa, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Escamilla, B. I.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Fang, Z. J.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Fedosejevs, R.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Feng, T.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Franchi, S.

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

Frigeri, P.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

García, A. G.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Ge, Y.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Gioannini, M.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Gladush, Y. G.

Gladyshev, A. G.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Gong, Y.

Granados, D.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Guo, P.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Guo, P. L.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

Guo, Y. X.

Guo, Z.

Han, I. S.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Harun, S. W.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Hogg, R. A.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Hostein, R.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Hou, C. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Hou, L.

Huang, K. F.

Huang, Y. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Hui, Z.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Ismail, M. F.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Ivanenko, A.

Jin, P.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Jin, Z. W.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Jordan, R. C.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Jusoh, Z.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Kawaguchi, K.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Keller, U.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Kim, J. O.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Kim, J. S.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Kobtsev, S.

Kovsh, A. R.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Kryzhanovskaya, N. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Kuramata, A.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Kurmulis, S.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Kuwatsuka, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Kuzin, E. A.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Lai, H. C.

Largeau, L.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Ledentsov, N. N.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Lee, S. J.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Lemaite, A.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Li, A.

Li, A. Z.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Li, D.

Li, G.

Li, S.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Li, X.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Y. Tang, X. Yu, X. Li, Z. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Lett. 39(3), 614–617 (2014).
[Crossref]

Li, X. H.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Li, Y.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Liu, C.

Liu, F. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Liu, J.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, J. M.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Liu, J. R.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Liu, L.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Liu, Y.

Lu, H.

Luo, A. P.

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Luo, W. F.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Luo, Z. C.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Lv, X. Q.

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Ma, W.

Maleev, N. A.

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Manasreh, M. O.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Mangold, M.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Mao, D.

Mashinsky, V. M.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Massies, J.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Matutano, G. M.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Mauguin, O.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Maximov, M. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Mazur, Y. I.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Mei, J. L.

Mi, Z.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Mikhrin, S. S.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Missous, M.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Molina, S. I.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Musikhin, Y. G.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Nasi, L.

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

Nikitina, E. V.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Ning, J. Q.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Noh, S. K.

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Odnoblyudov, V. A.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Oehler, A. E.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Ordoñez, F. M.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Pastor, J. M.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Patriache, G.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Philip, I. R.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

Pottiez, O.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Pousa, C. R. F.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Resan, B.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Richter, M.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Ripalda, J. M.

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Rosas, A. F.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Ruda, H.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Sabran, M. B. S.

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Sacconi, F.

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

Salamo, G. J.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Sales, S.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Salhi, A.

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

Samion, M. Z.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Sánchez, M. D.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Saveliev, I.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Scurtescu, C.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Semenova, E. S.

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Seravalli, L.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

Shao, D.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Sharbirin, A. S.

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Shernyakov, Y. M.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Shi, J.

Shi, W.

Su, K. W.

Su, L.

Su, Y.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Sudo, H.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Süedmeyer, T.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Sugawara, M.

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Sun, J.

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Sun, S.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Sun, Y.

Sun, Z.

Tamayo, R. I. Á.

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

Tang, Y.

Taschuk, M. T.

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Tian, Y.

Trevisi, G.

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

Tsui, Y. Y.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Ustinov, V. M.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Vasil’ev, A. P.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Wang, C.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Wang, J.

Wang, L.

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

Wang, Q.

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Wang, Q. J.

Wang, Y.

Wang, Y. G.

Wang, Z. G.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

Wang, Z. M.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Weingarten, K. J.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Wieck, A. D.

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Wu, J.

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Xu, D. G.

Xu, S. X.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Xu, W.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Xu, W. C.

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Yan, Z.

Yang, J.

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Yang, S.

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Yao, B.

Yao, J. Q.

Ye, Q.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Ye, X. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Yin, H. S.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

Yu, J. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Yu, L.

Yu, X.

Zhang, H.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

Zhang, J. C.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Zhang, Y.

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

Zhang, Z. Y.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Zhao, W.

Zhao, X.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhao, Y.

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Zheng, H. R.

Zheng, S. Q.

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Zheng, Z.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhong, K.

Zhou, G. Y.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Zhou, K. J.

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

Zhou, X. L.

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

Zhu, J.

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Zhukov, A. E.

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Zhuo, N.

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Adv. Opt. Photonics (1)

Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photonics 2(2), 201–228 (2010).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

C. Scurtescu, Z. Y. Zhang, J. Alcock, R. Fedosejevs, M. Blumin, I. Saveliev, S. Yang, H. Ruda, and Y. Y. Tsui, “Quantum dot saturable absorber for passive mode locking of Nd:YVO4 lasers at 1064 nm,” Appl. Phys. B: Lasers Opt. 87(4), 671–675 (2007).
[Crossref]

Appl. Phys. Lett. (5)

A. Salhi, S. Alshaibani, Y. Alaskar, A. Albadri, A. Alyamani, and M. Missous, “Tuning the optical properties of InAs QDs by means of digitally-alloyed GaAsSb strain reducing layers,” Appl. Phys. Lett. 113(10), 103101 (2018).
[Crossref]

G. Y. Zhou, Y. H. Chen, J. L. Yu, X. L. Zhou, X. L. Ye, P. Jin, and Z. G. Wang, “The transition from two-stage to three-stage evolution of wetting layer of InAs/GaAs quantum dots caused by postgrowth annealing,” Appl. Phys. Lett. 98(7), 071914 (2011).
[Crossref]

L. Seravalli, P. Frigeri, G. Trevisi, and S. Franchi, “1.59 µm room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates,” Appl. Phys. Lett. 92(21), 213104 (2008).
[Crossref]

J. M. Ripalda, D. Granados, and S. I. Molina, “Room temperature emission at 1.6 µm from InGaAs quantum dots capped with GaAsSb,” Appl. Phys. Lett. 87(20), 202108 (2005).
[Crossref]

Z. Mi, P. Bhattacharya, and J. Yang, “Growth and characteristics of ultralow threshold 1.45 µm metamorphic InAs tunnel injection quantum dot lasers on GaAs,” Appl. Phys. Lett. 89(15), 153109 (2006).
[Crossref]

Carbon (1)

Y. Zhao, P. L. Guo, X. H. Li, and Z. W. Jin, “Ultrafast photonics application of graphdiyne in optical communication region,” Carbon 149, 336–341 (2019).
[Crossref]

Curr. Appl. Phys. (1)

I. S. Han, J. S. Kim, J. O. Kim, S. K. Noh, and S. J. Lee, “Fabrication and characterization of InAs/InGaAs sub-monolayer quantum dot solar cell with dot-in-a-well structure,” Curr. Appl. Phys. 16(5), 587–592 (2016).
[Crossref]

Electron. Lett. (2)

N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, M. V. Maximov, Y. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov, and D. Bimberg, “High performance quantum dot lasers on GaAs substrates operating in 1.5 µm range,” Electron. Lett. 39(15), 1126–1128 (2003).
[Crossref]

Z. C. Luo, A. P. Luo, and W. C. Xu, “Stable multiwavelength erbium doped fibre laser using intensity-dependent loss mechanism with short cavity length,” Electron. Lett. 47(20), 1145–1146 (2011).
[Crossref]

IEEE Photonics J. (2)

Z. C. Luo, A. P. Luo, and W. C. Xu, “Tunable and switchable multiwavelength passively mode-locked fiber laser based on SESAM and in-line birefringence comb filter,” IEEE Photonics J. 3(1), 64–70 (2011).
[Crossref]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2(4), 571–577 (2010).
[Crossref]

J. Appl. Phys. (3)

L. Seravalli, M. Gioannini, F. Cappelluti, F. Sacconi, G. Trevisi, and P. Frigeri, “Broadband light sources based on InAs/InGaAs metamorphic quantum dots,” J. Appl. Phys. 119(14), 143102 (2016).
[Crossref]

E. S. Semenova, R. Hostein, G. Patriache, O. Mauguin, L. Largeau, I. R. Philip, A. Beveratos, and A. Lemaite, “Metamorphic approach to single quantum dot emission at 1.55 µm on GaAs substrate,” J. Appl. Phys. 103(10), 103533 (2008).
[Crossref]

L. Seravalli, P. Frigeri, L. Nasi, G. Trevisi, and C. Bocchi, “Metamorphic quantum dots: Quite different nanostructures,” J. Appl. Phys. 108(6), 064324 (2010).
[Crossref]

J. Cryst. Growth (1)

A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri, and V. Avanzini, “InAs/GaAs self-assembled quantum dots grown by ALMBE and MBE,” J. Cryst. Growth 175-176, 771–776 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (2)

M. D. Sánchez, E. A. Kuzin, O. Pottiez, B. I. Escamilla, A. G. García, F. M. Ordoñez, R. I. Á. Tamayo, and A. F. Rosas, “Tunable dual-wavelength actively Q-switched Er/Yb double-clad fiber laser,” Laser Phys. Lett. 11(1), 015102 (2014).
[Crossref]

A. P. Luo, Z. C. Luo, W. C. Xu, V. V. Dvoyrin, V. M. Mashinsky, and E. Dianov, “Tunable and switchable dual wavelength passively mode-locked Bi-doped all-fiber ring laser based on nonlinear polarization rotation,” Laser Phys. Lett. 8(8), 601–605 (2011).
[Crossref]

Light: Sci. Appl. (1)

C. C. Hou, H. M. Chen, J. C. Zhang, N. Zhuo, Y. Q. Huang, R. A. Hogg, D. Childs, J. Q. Ning, Z. G. Wang, F. Q. Liu, and Z. Y. Zhang, “Near-infrared and mid-infrared semiconductor broadband light emitters,” Light: Sci. Appl. 7(3), 17170 (2018).
[Crossref]

Mater. Res. Soc. Symp. Proc. (1)

M. Richter, B. Damilano, J. Massies, J. Y. Duboz, and A. D. Wieck, “InAs/In0.15Ga0.85As1-xNx quantum dots for 1.5 µm laser applications,” Mater. Res. Soc. Symp. Proc. 891, 0891-EE03-29 (2005).
[Crossref]

Microw. Opt. Technol. Lett. (1)

M. B. S. Sabran, Z. Jusoh, I. M. Babar, H. Ahmad, and S. W. Harun, “Dual-wavelength passively Q-switched erbium ytterbium codoped fiber laser based on a nonlinear polarization rotation technique,” Microw. Opt. Technol. Lett. 57(3), 530–533 (2015).
[Crossref]

Nano Lett. (1)

J. Wu, D. Shao, V. G. Dorogan, A. Z. Li, S. Li, E. A. DeCuir, M. O. Manasreh, Z. M. Wang, Y. I. Mazur, and G. J. Salamo, “Intersublevel infrared photodetector with strain-free GaAs quantum dot pairs grown by high-temperature droplet epitaxy,” Nano Lett. 10(4), 1512–1516 (2010).
[Crossref]

Nanoscale (1)

Z. Hui, W. Xu, X. Li, P. Guo, Y. Zhang, and J. Liu, “Cu2S nanosheets for ultrashort pulse generation in the near-infrared region,” Nanoscale 11(13), 6045–6051 (2019).
[Crossref]

Nanotechnology (3)

C. Wang, L. Wang, X. H. Li, W. F. Luo, T. Feng, Y. Zhang, P. Guo, and Y. Ge, “Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser,” Nanotechnology 30(2), 025204 (2019).
[Crossref]

J. Sun, P. Jin, and Z. G. Wang, “Extremely low density InAs quantum dots realized in situ on (100) GaAs,” Nanotechnology 15(12), 1763–1766 (2004).
[Crossref]

E. S. Semenova, A. E. Zhukov, S. S. Mikhrin, A. Y. Egorov, V. A. Odnoblyudov, A. P. Vasil’ev, E. V. Nikitina, A. R. Kovsh, N. V. Kryzhanovskaya, A. G. Gladyshev, S. A. Blokhin, Y. G. Musikhin, M. V. Maximov, Y. M. Shernyakov, V. M. Ustinov, and N. N. Ledentsov, “Metamorphic growth for application in long-wavelength (1.3–1.55 µm) lasers and MODFET- type structures on GaAs substrates,” Nanotechnology 15(4), S283–S287 (2004).
[Crossref]

Opt. Commun. (1)

L. Liu, Z. Zheng, X. Zhao, S. Sun, Y. Bian, Y. Su, J. Liu, and J. Zhu, “Dual-wavelength passively Q-switched Erbium doped fiber laser based on an SWNT saturable absorber,” Opt. Commun. 294, 267–270 (2013).
[Crossref]

Opt. Express (7)

B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
[Crossref]

X. H. Li, Y. G. Wang, Y. Wang, W. Zhao, X. Yu, Z. Sun, X. Cheng, X. Yu, Y. Zhang, and Q. Wang, “Nonlinear absorption of SWNT film and its effects to the operation state of pulsed fiber laser,” Opt. Express 22(14), 17227–17235 (2014).
[Crossref]

S. Kobtsev, A. Ivanenko, and Y. G. Gladush, “Ultrafast all-fibre laser mode-locked by polymer-free carbon nanotube film,” Opt. Express 24(25), 28768–28773 (2016).
[Crossref]

J. Liu, Z. Guo, H. Zhang, W. Ma, J. Wang, and L. Su, “Dual-wavelength Q-switched Er:SrF2 laser with a black phosphorus absorber in the mid-infrared region,” Opt. Express 24(26), 30289–30295 (2016).
[Crossref]

Y. Sun, Y. Bai, D. Li, L. Hou, B. Bai, Y. Gong, L. Yu, and J. Bai, “946 nm Nd:YAG double Q-switched laser based on monolayer WSe2 saturable absorber,” Opt. Express 25(18), 21312 (2017).
[Crossref]

Y. Liu, K. Zhong, J. L. Mei, C. Liu, J. Shi, X. Ding, D. G. Xu, W. Shi, and J. Q. Yao, “Compact and stable high-repetition-rate terahertz generation based on an efficient coaxially pumped dual-wavelength laser,” Opt. Express 25(25), 31988–31996 (2017).
[Crossref]

Y. X. Guo, X. H. Li, P. L. Guo, and H. R. Zheng, “Supercontinuum generation in an er-doped figure-eight passively mode-locked fiber laser,” Opt. Express 26(8), 9893–9900 (2018).
[Crossref]

Opt. Lett. (2)

Optik (1)

H. Ahmad, M. Z. Samion, A. S. Sharbirin, and M. F. Ismail, “Dual-wavelength, passively Q-switched thulium-doped fiber laser with n-doped graphene saturable absorber,” Optik 149, 391–397 (2017).
[Crossref]

Photonics Res. (1)

J. M. Liu, Y. Chen, Y. Li, H. Zhang, S. Q. Zheng, and S. X. Xu, “Switchable dual-wavelength Q-switched fiber laser using multilayer black phosphorus as a saturable absorber,” Photonics Res. 6(3), 198–203 (2018).
[Crossref]

Proc. SPIE (1)

Z. Y. Zhang, C. Scurtescu, M. T. Taschuk, Y. Y. Tsui, and R. Fedosejevs, “GaAs based semiconductor quantum dot saturable absorber mirror grown by molecular beam epitaxy,” Proc. SPIE 6343, 63432N (2006).
[Crossref]

Sci. Rep. (2)

Z. Y. Zhang, A. E. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Süedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser,” Sci. Rep. 2(1), 477 (2012).
[Crossref]

G. M. Matutano, D. Barrera, C. R. F. Pousa, R. C. Jordan, L. Seravalli, G. Trevisi, P. Frigeri, S. Sales, and J. M. Pastor, “All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of  a metamorphic InAs Quantum Dot,” Sci. Rep. 6(1), 27214 (2016).
[Crossref]

Other (1)

T. Akiyama, M. Ekawa, M. Sugawara, K. Kawaguchi, H. Sudo, H. Kuwatsuka, H. Ebe, A. Kuramata, and Y. Arakawa, “Quantum dots for semiconductor optical amplifiers,” in Optical Fiber Communication Conference, 2005 OSA Technical Digest (CD) (Optical Society of America, 2005), paper OWM2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Characterizations of 1.55 µm InAs/GaAs QDs. (a) Structural schematic diagram and (b) a 2×2 µm2 AFM image of InAs/GaAs QDs grown without capping layer. (c) The linear reflection spectrum of the QD-SESAM. The inset shows the RT-PL of QD test sample.
Fig. 2.
Fig. 2. Schematic diagram of experimental setup. (WDM: wavelength division multiplexing; EDF; PI-ISO: polarization insensitive isolator; PC: polarization controller; OC: output coupler).
Fig. 3.
Fig. 3. Output characteristics of the passively Q-switched laser based on InAs/GaAs QD SESAM. (a) Corresponding pulse train evolution under different pump powers. Typical (b) single- and (c) double-wavelength QS pulses under different pump powers. (d) The output power and single pulse energy and (e) repetition frequency and duration time change versus the pump power.
Fig. 4.
Fig. 4. Output optical spectra of the passively Q-switched laser based on InAs/GaAs QD SESAM. Output spectra of (a) single- and (b) dual-wavelength QS lasers measured under different pump powers. (c) The spectral power density versus the pump power.
Fig. 5.
Fig. 5. Optical properties of the QD-SESAM grown without substrate rotation during the QD growth. (a) Schematic figure of the QD-SESAM. The linear reflection spectra of (b) the area I, (c) the area II, and (d) the area III. The insets of (b), (c), (d) are the RT-PL spectra for the area I, II, III on the QD test sample grown without substrate rotation, respectively.

Metrics