Abstract

Continuous-variable quantum key distribution (CVQKD) with a real local oscillator (LO) is confronted with new security problems due to the reference pulses transmitted together with quantum signals over the insecure quantum channel. In this paper, we propose a method of phase attack on reference pulses of the CVQKD with real LOs. Under the phase attack, the phase drifts of reference pulses are manipulated by eavesdroppers, and then the phase compensation error is increased. Consequently, the secret key rate is reduced due to the imperfect phase compensation for quantum signals. Based on the noise model of imperfect phase compensation, the practical security of the CVQKD under phase attack is analyzed. Besides, we propose an effective method to detect the intensity of phase attack, in which the deviation of phase compensation error on quantum signals and that on reference signals are monitored in real time. The simulation results show that the security analysis is accurate and the method of phase attack detection is feasible.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack

Yi Zheng, Peng Huang, Anqi Huang, Jinye Peng, and Guihua Zeng
Opt. Express 27(19) 27369-27384 (2019)

Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise

Shengjun Ren, Rupesh Kumar, Adrian Wonfor, Xinke Tang, Richard Penty, and Ian White
J. Opt. Soc. Am. B 36(3) B7-B15 (2019)

High key rate continuous-variable quantum key distribution with a real local oscillator

Tao Wang, Peng Huang, Yingming Zhou, Weiqi Liu, Hongxin Ma, Shiyu Wang, and Guihua Zeng
Opt. Express 26(3) 2794-2806 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
    [Crossref]
  2. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
    [Crossref] [PubMed]
  3. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
    [Crossref]
  4. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent States,” Phys. Rev. Lett. 114(7), 070501 (2015).
    [Crossref] [PubMed]
  5. E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy (Basel) 17, 6072–6092 (2015).
    [Crossref]
  6. R. Renner and J. I. Cirac, “De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102(11), 110504 (2009).
    [Crossref] [PubMed]
  7. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
    [Crossref] [PubMed]
  8. A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
    [Crossref] [PubMed]
  9. A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
    [Crossref] [PubMed]
  10. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
    [Crossref]
  11. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
    [Crossref] [PubMed]
  12. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
    [Crossref]
  13. J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
    [Crossref]
  14. H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
    [Crossref]
  15. X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
    [Crossref]
  16. W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, “Monitoring of continuous-variable quantum key distribution system in real environment,” Opt. Express 25(16), 19429–19443 (2017).
    [Crossref] [PubMed]
  17. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
    [Crossref]
  18. P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
    [Crossref]
  19. B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
    [Crossref]
  20. D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
    [Crossref] [PubMed]
  21. Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
    [Crossref]
  22. D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
    [Crossref]
  23. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
    [Crossref]
  24. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
    [Crossref]
  25. D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
    [Crossref] [PubMed]
  26. T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
    [Crossref] [PubMed]
  27. T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
    [Crossref]
  28. P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
    [Crossref]
  29. P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
    [Crossref]
  30. F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

2018 (2)

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

2017 (3)

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref] [PubMed]

W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, “Monitoring of continuous-variable quantum key distribution system in real environment,” Opt. Express 25(16), 19429–19443 (2017).
[Crossref] [PubMed]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

2016 (2)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
[Crossref]

2015 (7)

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent States,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref] [PubMed]

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy (Basel) 17, 6072–6092 (2015).
[Crossref]

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
[Crossref] [PubMed]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
[Crossref] [PubMed]

2014 (1)

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

2013 (6)

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

2012 (3)

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

2011 (1)

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

2010 (1)

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

2009 (1)

R. Renner and J. I. Cirac, “De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102(11), 110504 (2009).
[Crossref] [PubMed]

2007 (1)

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

2003 (2)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Alléaume, R.

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
[Crossref]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

Bobrek, M.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Cerf, N. J.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Chen, W.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Chi, Y. M.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Cirac, J. I.

R. Renner and J. I. Cirac, “De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102(11), 110504 (2009).
[Crossref] [PubMed]

Coles, P. J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Diamanti, E.

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy (Basel) 17, 6072–6092 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

Fang, J.

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

Fang, S.

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

García-Patrón, R.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Grice, W.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Gui, M.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

Guo, G. C.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Han, Z. F.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Huang, D.

W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, “Monitoring of continuous-variable quantum key distribution system in real environment,” Opt. Express 25(16), 19429–19443 (2017).
[Crossref] [PubMed]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
[Crossref] [PubMed]

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

Huang, J.

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

Huang, J. Z.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Huang, L.

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

Huang, P.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, “Monitoring of continuous-variable quantum key distribution system in real environment,” Opt. Express 25(16), 19429–19443 (2017).
[Crossref] [PubMed]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
[Crossref] [PubMed]

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

Jiang, M. S.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

Kumar, R.

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
[Crossref]

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

Leverrier, A.

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref] [PubMed]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent States,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref] [PubMed]

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy (Basel) 17, 6072–6092 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

Li, H.

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

Li, H. W.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Liang, L. M.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Lin, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
[Crossref] [PubMed]

Liu, W.

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Lo, H. K.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

Lougovski, P.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Lütkenhaus, N.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Lvovsky, A. I.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Ma, H.

Ma, X. C.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Peng, J.

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Pooser, R.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Qi, B.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

Qian, L.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

Qin, H.

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Renner, R.

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

R. Renner and J. I. Cirac, “De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102(11), 110504 (2009).
[Crossref] [PubMed]

Sarovar, M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Soh, D. B. S.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Sun, S. H.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Tian, L.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

Tualle-Brouri, R.

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Urayama, J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Van Assche, G.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

Wang, C.

Wang, S.

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Wang, T.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

Weedbrook, C.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Wenger, J.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

Yin, Z. Q.

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

Youn, S. H.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Zeng, G.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

W. Liu, J. Peng, P. Huang, D. Huang, and G. Zeng, “Monitoring of continuous-variable quantum key distribution system in real environment,” Opt. Express 25(16), 19429–19443 (2017).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

D. Huang, P. Huang, D. Lin, C. Wang, and G. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695–3698 (2015).
[Crossref] [PubMed]

D. Huang, D. Lin, C. Wang, W. Liu, S. Fang, J. Peng, P. Huang, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511–17519 (2015).
[Crossref] [PubMed]

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

Zhou, Y.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref] [PubMed]

Zhou, Y. L.

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

Zhu, W.

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Chin. Phys. Lett. (1)

D. Huang, J. Fang, C. Wang, P. Huang, and G. Zeng, “A 300-MHz bandwidth balanced homodyne detector for continuous variable quantum key distribution,” Chin. Phys. Lett. 30(11), 114209 (2013).
[Crossref]

Entropy (Basel) (1)

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: principle, security and implementations,” Entropy (Basel) 17, 6072–6092 (2015).
[Crossref]

Int. J. Theor. Phys. (1)

P. Huang, D. Lin, D. Huang, and G. Zeng, “Security of continuous-variable quantum key distribution with imperfect phase compensation,” Int. J. Theor. Phys. 54(8), 2613–2622 (2015).
[Crossref]

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Nature (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421(6920), 238–241 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

Y. M. Chi, B. Qi, W. Zhu, L. Qian, H. K. Lo, S. H. Youn, A. I. Lvovsky, and L. Tian, “A balanced homodyne detector for high-rate gaussian-modulated coherent-state quantum key distribution,” New J. Phys. 13(1), 013003 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. A (7)

P. Jouguet, S. Kunz-Jacques, E. Diamanti, and A. Leverrier, “Analysis of imperfection in practical continuous-variable quantum key distribution,” Phys. Rev. A 86(3), 032309 (2012).
[Crossref]

B. Qi, L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76(5), 052323 (2007).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, “Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack,” Phys. Rev. A 87(6), 062329 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, M. Gui, Y. L. Zhou, and L. M. Liang, “Enhancement of the security of a practical continuous-variable quantum-key-distribution system by manipulating the intensity of the local oscillator,” Phys. Rev. A 89(3), 032310 (2014).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

Phys. Rev. A (Coll. Park) (3)

H. Qin, R. Kumar, and R. Alléaume, “Quantum hacking: saturation attack on practical continuous-variable quantum key distribution,” Phys. Rev. A (Coll. Park) 94(1), 012325 (2016).
[Crossref]

P. Huang, J. Huang, T. Wang, H. Li, D. Huang, and G. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A (Coll. Park) 95(5), 052302 (2017).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A (Coll. Park) 97(1), 012310 (2018).
[Crossref]

Phys. Rev. Lett. (5)

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent States,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref] [PubMed]

R. Renner and J. I. Cirac, “De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography,” Phys. Rev. Lett. 102(11), 110504 (2009).
[Crossref] [PubMed]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref] [PubMed]

A. Leverrier, R. García-Patrón, R. Renner, and N. J. Cerf, “Security of continuous-variable quantum key distribution against general attacks,” Phys. Rev. Lett. 110(3), 030502 (2013).
[Crossref] [PubMed]

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref] [PubMed]

Phys. Rev. X (2)

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator“locally”in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Quantum Inf. Comput. (1)

F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and P. Grangier, “Virtual entanglement and reconciliation protocols for quantum cryptography with continuous variables,” Quantum Inf. Comput. 3(7), 535–552 (2003).

Rev. Mod. Phys. (1)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Sci. Rep. (1)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The system model of the CVQKD scheme with real LOs. The phase drifts of quantum signals are compensated by the phases of reference pulses.
Fig. 2
Fig. 2 The model of Eve’s phase attack on reference pulses of the CVQKD with real LOs. The reference pulses are controlled by Eve and then the additional phase noises are added into reference pulses.
Fig. 3
Fig. 3 The method of phase attack detection. The phase drift of a reference pulse is compensated by the following one, so that the deviation of phase compensation error on quantum signals and that on reference pulses are monitored in real time.
Fig. 4
Fig. 4 The theoretical and practical secret key rates of the CVQKD under phase attack. The phase noise variance of quantum channel is 0.0001, and that caused by Eve’s phase attack is 0.0000, 0.0009 and 0.0025 respectively. The solid line, dash line and dotted line are the theoretical secret key rates, while circles, squares and triangles are the secret key rates estimated by 2000 training signals.
Fig. 5
Fig. 5 The deviation of phase compensation error on quantum signals (QS) and that on reference pulses (RP). The phase noise variance of quantum channel is 0.0001, and that caused by Eve’s phase attack is 0.0009. The dash line and dotted line are the theoretical deviations, while the circles and crosses are the deviations estimated by training signals.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

ϕ S = θ A θ B + φ S ch ,
ϕ R = θ A θ B + φ R ch ,
δ ϕ S = ϕ S ϕ R .
ϕ R = ϕ R + φ R attack ,
δ ϕ S = φ S ch φ R ch φ R attack .
V S =2 V ch + V attack .
X B = T ( X A cosδ ϕ S P A sinδ ϕ S )+ X N ,
P B = T ( X A sinδ ϕ S + P A cosδ ϕ S )+ P N ,
γ AB =( V Ι 2 T κ ( V 2 1) σ z T κ ( V 2 1) σ z T κ (V+ χ tot κ ) I 2 ),
T κ =κT,
χ tot κ = χ line κ + χ hom / T κ ,
ε c κ = [ ε c +(1κ)(V1)]/κ .
κ= (E[cosδ ϕ S ]) 2 ,
κ = (1 1 2 V S ) 2 ,
K=β I AB χ BE ,
I AB = 1 2 log 2 V+ χ tot κ 1+ χ tot κ .
χ BE = i=1 2 G( λ i 1 2 ) i=3 5 G( λ i 1 2 ) ,
λ 1,2 2 = 1 2 (A± A 2 4B ),
λ 3,4 2 = 1 2 (C± C 2 4D ),
A= V 2 +2 T κ (1 V 2 )+ T κ 2 (V+ χ line κ ) 2 ,
B= T κ 2 (1+V χ line κ ) 2 ,
C= A χ hom +V B + T κ (V+ χ line κ ) T κ (V+ χ line κ ) ,
D= V B +B χ hom T κ (V+ χ line κ ) .
T ^ κ = ( i=1 M x i y i i=1 M x i 2 ) 2 ,
ε ^ c κ = 1 M T ^ κ i=1 M ( y i T ^ κ x i ) 2 .
δ ϕ R,i = ϕ R,i ϕ R,i+1 ,
V R =2 V ch +2 V attack ,

Metrics