Abstract

We propose a design of a retinal-scanning-based near-eye display for augmented reality. Our solution is highlighted by a laser scanning projector, a diffractive optical element, and a moist eye with gradient refractive indices. The working principles related to each component are comprehensively studied. Its key performance is summarized as follows. The field of view is 122°, angular resolution is 8.09′, diffraction efficiency is 57.6%, transmittance is 80.6%, uniformity is 0.91, luminance is 323 cd/m2, modulation transfer functions are above 0.99999 at 3.71 cycle/degree, contrast ratio is 4878, and distortion is less than 24%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of retinal-projection-based near-eye display with contact lens

Yuhang Wu, Chao Ping Chen, Lantian Mi, Wenbo Zhang, Jingxin Zhao, Yifan Lu, Weiqian Guo, Bing Yu, Yang Li, and Nizamuddin Maitlo
Opt. Express 26(9) 11553-11567 (2018)

Design of foveated contact lens display for augmented reality

Jie Chen, Lantian Mi, Chao Ping Chen, Haowen Liu, Jinghui Jiang, and Wenbo Zhang
Opt. Express 27(26) 38204-38219 (2019)

Design of retinal projection displays enabling vision correction

Chao Ping Chen, Lei Zhou, Jiahao Ge, Yuhang Wu, Lantian Mi, Yishi Wu, Bing Yu, and Yang Li
Opt. Express 25(23) 28223-28235 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Melzer and K. Moffitt, Head-Mounted Displays: Designing for the User (McGraw-Hill, 1997).
  2. W. Barfield, Fundamentals of Wearable Computers and Augmented Reality 2nd Edition (Chemical Rubber Company, 2015).
  3. M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Edition (Wiley, 2008).
  4. J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
    [Crossref]
  5. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [Crossref] [PubMed]
  6. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  7. R. Zhu, G. Tan, J. Yuan, and S.-T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
    [Crossref] [PubMed]
  8. L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
    [Crossref] [PubMed]
  9. Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
    [Crossref] [PubMed]
  10. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
    [Crossref]
  11. G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
    [Crossref] [PubMed]
  12. Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium Digest of Technical Papers (2004), pp. 310–313.
    [Crossref]
  13. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  14. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  15. D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
    [Crossref] [PubMed]
  16. Q. Wang, D. Cheng, Y. Wang, H. Hua, and G. Jin, “Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements,” Appl. Opt. 52(7), C88–C99 (2013).
    [Crossref] [PubMed]
  17. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  18. Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
    [Crossref] [PubMed]
  19. J. Yang, P. Twardowski, P. Gérard, and J. Fontaine, “Design of a large field-of-view see-through near to eye display with two geometrical waveguides,” Opt. Lett. 41(23), 5426–5429 (2016).
    [Crossref] [PubMed]
  20. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
    [Crossref] [PubMed]
  21. Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.
  22. Z. Liu, Y. Pang, C. Pan, and Z. Huang, “Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics,” Opt. Express 25(24), 30720–30731 (2017).
    [Crossref] [PubMed]
  23. Wikipedia, “Virtual retinal display,” https://en.wikipedia.org/wiki/ Virtual_retinal_display.
  24. T. A. Furness III and J. S. Kollin, “Virtual retinal display,” US Patent 5,467,104 (1992).
  25. S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
    [Crossref]
  26. R. B. Sprague, “Method and apparatus to process display and non-display information,” US Patent 8,520,309 B2 (2008).
  27. R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
    [Crossref]
  28. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
    [Crossref]
  29. E. Tremblay, M. Guillaumee, and C. Moser, “Method and apparatus for head worn display with multiple exit pupils,” US Patent 9,846,307 B2 (2017).
  30. R. J. Jacobs, I. L. Bailey, and M. A. Bullimore, “Artificial pupils and Maxwellian view,” Appl. Opt. 31(19), 3668–3677 (1992).
    [Crossref] [PubMed]
  31. H. K. Walker, W. D. Hall, and J. W. Hurst, Clinical Methods: The History, Physical and Laboratory Examinations 3rd Edition (Butterworth-Heinemann, 1990), Chap. 58.
  32. C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and Y. Li, “Design of retinal projection displays enabling vision correction,” Opt. Express 25(23), 28223–28235 (2017).
    [Crossref]
  33. L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).
  34. Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
    [Crossref] [PubMed]
  35. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [Crossref] [PubMed]
  36. M. Bass,‎ C. DeCusatis,‎ J. Enoch,‎ V. Lakshminarayanan,‎ G. Li,‎ C. MacDonald, V. Mahajan,‎ and E. V. Stryland, Handbook of Optics 3rd Edition Volume III: Vision and Vision Optics (McGraw-Hill Education, 2009).
  37. M. Farid, “The tear film: the neglected refractive interface,” https://www.eyeworld.org/supplements/EW-September-supplement-2014.pdf .
  38. Wikipedia, “Cardinal point (optics),” https://en.wikipedia.org/wiki/Cardinal_point_(optics) .
  39. S. E. Lyshevski, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering 2nd Edition (Chemical Rubber Company, 2005).
  40. F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Pearson, 2006).
  41. https://www.projectorcentral.com/Microvision-projectors.htm .
  42. O. Svelto, Principles of Lasers 5th Edition (Springer, 2010).
  43. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref] [PubMed]
  44. T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
    [Crossref] [PubMed]
  45. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  46. COMSOL, “An introduction to the finite element method,” https://www.comsol.com/multiphysics/finite-element-method .
  47. W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
    [Crossref]
  48. L. Mi, C. P. Chen, Y. Lu, W. Zhang, M. Zhu, R. Tang, X. Ren, and N. Maitlo, “A lensless retinal scanning display for augmented reality,” in SID Display Week (2019), pp. 1583–1586.
  49. R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).
  50. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]

2019 (1)

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

2018 (3)

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

2017 (7)

2016 (3)

2015 (1)

2014 (2)

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

2013 (1)

2012 (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

2010 (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

2009 (2)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

D. Cheng, Y. Wang, H. Hua, and M. M. Talha, “Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism,” Appl. Opt. 48(14), 2655–2668 (2009).
[Crossref] [PubMed]

2007 (2)

2006 (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

2003 (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

2000 (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

1992 (1)

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Amitai, Y.

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium Digest of Technical Papers (2004), pp. 310–313.
[Crossref]

Bailey, I. L.

Bullimore, M. A.

Cao, H.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Chen, C. P.

Chen, H.-S.

Chen, P.-J.

Cheng, D.

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Dainty, C.

Duan, X.

Fontaine, J.

Ford, J.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Fuchs, H.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Furness, T. A.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Gao, Q.

Ge, J.

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Gérard, P.

Goncharov, A. V.

Guo, W.

Hendricks, L.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Hong, J.-Y.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Hu, X.

Hua, H.

Huang, Z.

Hwang, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Jacobs, R. J.

Jeon, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Jeong, J.-H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Jin, G.

Jin, H.

Kang, H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Kelly, J. P.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Kim, H.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Laakkonen, P.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Lee, B.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Lee, G.-Y.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Levola, T.

Li, X.

Li, Y.

Lin, Y.-H.

Liu, J.

Liu, P.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

Liu, Z.

Lu, Y.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Maitlo, N.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

McQuaide, S. C.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Mi, L.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and Y. Li, “Design of retinal projection displays enabling vision correction,” Opt. Express 25(23), 28223–28235 (2017).
[Crossref]

Moon, S.

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

O’Brien, T.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Pan, C.

Pang, Y.

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Ren, X.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

Rolland, J. P.

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

Rutherford, T.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Schowengerdt, B. T.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Seibel, E. J.

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

Sprague, R.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Talha, M. M.

Tan, G.

Tang, R.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

Tremblay, E.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Twardowski, P.

Wang, K.

Wang, Q.

Wang, Y.

Wang, Y.-J.

Weng, Y.

Wu, S.-T.

Wu, Y.

Xu, D.

Yang, J.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Yu, B.

Yuan, J.

Zhang, A.

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Zhang, W.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Zhang, Y.

Zhang, Z.

Zhao, J.

Zhao, T.

Zhou, L.

Zhou, Y.

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

Zhu, M.

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

Zhu, R.

ACM Trans. Graph. (2)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 85 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 89 (2014).
[Crossref]

Appl. Opt. (3)

Displays (1)

S. C. McQuaide, E. J. Seibel, J. P. Kelly, B. T. Schowengerdt, and T. A. Furness, “A retinal scanning display system that produces multiple focal planes with a deformable membrane mirror,” Displays 24(2), 65–72 (2003).
[Crossref]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (2)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Nat. Commun. (1)

G.-Y. Lee, J.-Y. Hong, S. Hwang, S. Moon, H. Kang, S. Jeon, H. Kim, J.-H. Jeong, and B. Lee, “Metasurface eyepiece for augmented reality,” Nat. Commun. 9(1), 4562 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref] [PubMed]

Opt. Eng. (1)

J. P. Rolland, “Wide-angle, off-axis, see-through head-mounted display,” Opt. Eng. 39(7), 1760–1767 (2000).
[Crossref]

Opt. Express (11)

Z. Liu, Y. Pang, C. Pan, and Z. Huang, “Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics,” Opt. Express 25(24), 30720–30731 (2017).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

R. Zhu, G. Tan, J. Yuan, and S.-T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

L. Zhou, C. P. Chen, Y. Wu, Z. Zhang, K. Wang, B. Yu, and Y. Li, “See-through near-eye displays enabling vision correction,” Opt. Express 25(3), 2130–2142 (2017).
[Crossref] [PubMed]

Q. Gao, J. Liu, X. Duan, T. Zhao, X. Li, and P. Liu, “Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter,” Opt. Express 25(7), 8412–8424 (2017).
[Crossref] [PubMed]

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Design of see-through near-eye display for presbyopia,” Opt. Express 25(8), 8937–8949 (2017).
[Crossref] [PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

Y. Weng, D. Xu, Y. Zhang, X. Li, and S.-T. Wu, “Polarization volume grating with high efficiency and large diffraction angle,” Opt. Express 24(16), 17746–17759 (2016).
[Crossref] [PubMed]

T. Levola and P. Laakkonen, “Replicated slanted gratings with a high refractive index material for in and outcoupling of light,” Opt. Express 15(5), 2067–2074 (2007).
[Crossref] [PubMed]

C. P. Chen, L. Zhou, J. Ge, Y. Wu, L. Mi, Y. Wu, B. Yu, and Y. Li, “Design of retinal projection displays enabling vision correction,” Opt. Express 25(23), 28223–28235 (2017).
[Crossref]

Y. Wu, C. P. Chen, L. Mi, W. Zhang, J. Zhao, Y. Lu, W. Guo, B. Yu, Y. Li, and N. Maitlo, “Design of retinal-projection-based near-eye display with contact lens,” Opt. Express 26(9), 11553–11567 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (1)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Proc. SPIE (3)

W. Zhang, C. P. Chen, L. Mi, Y. Lu, M. Zhu, X. Ren, R. Tang, and N. Maitlo, “A retinal-projection-based near-eye display with contact lens for mixed reality,” Proc. SPIE 11040, 1104005 (2019).
[Crossref]

L. Mi, W. Zhang, C. P. Chen, Y. Zhou, Y. Li, B. Yu, and N. Maitlo, “A retinal-projection-based near-eye display for virtual reality,” Proc. SPIE 10676, 106761C (2018).

R. Sprague, A. Zhang, L. Hendricks, T. O’Brien, J. Ford, E. Tremblay, and T. Rutherford, “Novel HMD concepts from the DARPA SCENICC program,” Proc. SPIE 8383, 838302 (2012).
[Crossref]

Other (21)

E. Tremblay, M. Guillaumee, and C. Moser, “Method and apparatus for head worn display with multiple exit pupils,” US Patent 9,846,307 B2 (2017).

Wikipedia, “Virtual retinal display,” https://en.wikipedia.org/wiki/ Virtual_retinal_display.

T. A. Furness III and J. S. Kollin, “Virtual retinal display,” US Patent 5,467,104 (1992).

R. B. Sprague, “Method and apparatus to process display and non-display information,” US Patent 8,520,309 B2 (2008).

M. Bass,‎ C. DeCusatis,‎ J. Enoch,‎ V. Lakshminarayanan,‎ G. Li,‎ C. MacDonald, V. Mahajan,‎ and E. V. Stryland, Handbook of Optics 3rd Edition Volume III: Vision and Vision Optics (McGraw-Hill Education, 2009).

M. Farid, “The tear film: the neglected refractive interface,” https://www.eyeworld.org/supplements/EW-September-supplement-2014.pdf .

Wikipedia, “Cardinal point (optics),” https://en.wikipedia.org/wiki/Cardinal_point_(optics) .

S. E. Lyshevski, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering 2nd Edition (Chemical Rubber Company, 2005).

F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to Optics 3rd Edition (Pearson, 2006).

https://www.projectorcentral.com/Microvision-projectors.htm .

O. Svelto, Principles of Lasers 5th Edition (Springer, 2010).

Y. Wu, C. P. Chen, L. Zhou, Y. Li, B. Yu, and H. Jin, “Near-eye display for vision correction with large FOV,” in SID Display Week (2017), pp. 767–770.

Y. Amitai, “Extremely compact high-performance HMDs based on substrate-guided optical element,” in SID Symposium Digest of Technical Papers (2004), pp. 310–313.
[Crossref]

J. E. Melzer and K. Moffitt, Head-Mounted Displays: Designing for the User (McGraw-Hill, 1997).

W. Barfield, Fundamentals of Wearable Computers and Augmented Reality 2nd Edition (Chemical Rubber Company, 2015).

M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Edition (Wiley, 2008).

H. K. Walker, W. D. Hall, and J. W. Hurst, Clinical Methods: The History, Physical and Laboratory Examinations 3rd Edition (Butterworth-Heinemann, 1990), Chap. 58.

E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

COMSOL, “An introduction to the finite element method,” https://www.comsol.com/multiphysics/finite-element-method .

L. Mi, C. P. Chen, Y. Lu, W. Zhang, M. Zhu, R. Tang, X. Ren, and N. Maitlo, “A lensless retinal scanning display for augmented reality,” in SID Display Week (2019), pp. 1583–1586.

R. E. Fischer, B. Tadic-Galeb, and P. R. Yoder, Optical System Design 2nd Edition (McGraw-Hill Education, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Proposed structure of our RSD, which can be decomposed into three major components, i.e. a laser scanning projector, a DOE, and an eye. dp is the distance between projector and glass, ddoe the horizontal distance between projector and DOE, dlens the distance between DOE and lens center, W the dimension of DOE, x the distance starting from the left edge of DOE, θi the angle of incident light, and θm the angle of diffracted light.
Fig. 2
Fig. 2 Cross-sectional view of our schematic moist eye, consisting of tear, cornea (anterior and posterior), aqueous chamber filled with aqueous humor, iris with an opening known as pupil, lens (anterior and posterior), vitreous chamber filled with vitreous humor, and retina.
Fig. 3
Fig. 3 Cross-sectional view of lens of eye with an assistive virtual plane. The center of virtual plane is designated as the center of lens. z is the distance measured from the vertex of anterior lens along the z-axis, and y the distance measured from the lens center along the y-axis.
Fig. 4
Fig. 4 Refractive indices of lens calculated along the (a) horizontal and (b) vertical directions, respectively. It can be seen that the refractive index maximizes at the center, from which it starts to decrease towards the outermost surface.
Fig. 5
Fig. 5 Schematic drawing of the laser scanning projector, inside which are mounted a laser diode, a mirror, and a scanning mirror controlled by a biaxial MEMS.
Fig. 6
Fig. 6 Profile of the slanted grating, where p is the grating period, hg the grating depth, wg the grating width, β the slant angle relative to the normal, θi the incident angle, and θm the diffraction angle.
Fig. 7
Fig. 7 Optical surfaces used in Code V. The object is placed at 3 m ahead of the eye. Surfaces 1 to 8 (S1 to S8) constitute the moist eye, of which, S1 is tear, S2 anterior cornea, S3 posterior cornea, S4 iris with pupil, S5 anterior lens, S6 virtual plane, S7 posterior lens, and S8 retina.
Fig. 8
Fig. 8 Ray tracing diagram for the fields of 0°, 10°, 20°, 30°, 40°, 50°, and 61°. It can be seen that all rays are converged at the lens center.
Fig. 9
Fig. 9 Illustration of FOV, which is the angle subtended by DOE and whose vertex is situated at the center of entrance pupil. Say W = H = 38.4 mm and der = 12 mm, FOV is 122° (diagonal).
Fig. 10
Fig. 10 9 gratings picked for simulation, of which 1 is on the upper-left, 2 the upper-center, 3 the upper-right, 4 the middle-left, 5 the middle-center, 6 the middle-right, 7, the lower-left, 8 the lower-center, and 9 the lower-right.
Fig. 11
Fig. 11 Spot diagram for the fields of 0°, 10°, 20°, 30°, 40°, 50°, and 61°. It can be seen that the spot of each field is smaller than the Airy disk.
Fig. 12
Fig. 12 MTFs are calculated as a function of spatial frequency in cycle/degree for the fields of 0° and 61° when the distances between DOE and eye are offset by 0 mm, 3 mm and 6 mm from the target eye relief of 12 mm, respectively. At 3.71 cycle/degree, which corresponds to the angular resolution of 8.09′, MTFs are above 0.99999 for all fields and eye relief offsets.
Fig. 13
Fig. 13 Distortion versus the field angle. For the fact that the eye is far from being an ideal imaging system, distortion is an inherent characteristic of all retinal projection based NEDs.
Fig. 14
Fig. 14 (a) Original image (photographer: C. P. Chen, location: Duku Highway, Xinjiang, China), (b) see-through retinal image, and (c) projected retinal image. Compared to the original one, the projected retinal image is, while distorted, sharp and bright as a whole.

Tables (6)

Tables Icon

Table 1 Parameters of gradient lens

Tables Icon

Table 2 Parameters for laser scanning projector

Tables Icon

Table 3 Parameters of optical surfaces used in Code V

Tables Icon

Table 4 Detailed parameters for aspherical surfaces

Tables Icon

Table 5 Detailed parameters for gradient refractive indices of anterior and posterior lenses

Tables Icon

Table 6 Optimized parameters of gratings

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

n a ( z,y )= n 00 + c 10 y 2 + c 20 y 4 + c 01 ( z+ z m )+ c 02 ( z+ z m ) 2 + c 03 ( z+ z m ) 3 + c 04 ( z+ z m ) 4
n p ( z,y )= n max + c 10 y 2 + c 20 y 4 + c 01,2 z+ c 02,2 z 2 + c 03,2 z 3 + c 04,2 z 4
D= D 0 1+ ( 4 M 2 λL π D 0 2 ) 2
θ div = 2 M 2 λ π D 0
p( sin θ i sin θ m )=mλ
tan θ i = d doe +x d p
tan θ m = W/2 x d lens
FOV=2 tan 1 ( W 2 + H 2 2( d er + d ep ) )
AR= 60FOV N = 60FOV N h 2 + N v 2
Γ=1 σ D E avg
σ= 1 n i=1 n ( D E i D E avg ) 2
L= ΦD E avg ΩA
Ω=4 cos 1 1+ ( W 2 d lens ) 2 + ( H 2 d lens ) 2 [ 1+ ( W 2 d lens ) 2 ][ 1+ ( H 2 d lens ) 2 ]
A=WH
CR= C R 0 +1+MTF( C R 0 1 ) C R 0 +1MTF( C R 0 1 )
Distortion= h a h p h p

Metrics