Abstract

A novel multimode waveguide based Mach-Zehnder interferometer (MZI) is demonstrated on an SOI platform with the properties of compact footprint and temperature-insensitive operation. The device can achieve a thermal dependence around 13pm/°C in a wavelength range of 40nm. Owing to the utilization of one single straight multimode waveguide, the device is naturally immune to local temperature distributions. The measured results exhibit transmissions with an extinction ratio better than 8dB and a minimum insertion loss lower than 0.31dB over the wavelength range of 1545nm-1585nm. Moreover, the proposed device is compatible with CMOS process.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-compact and temperature-insensitive Mach–Zehnder interferometer based on one multimode waveguide on silicon

Huizhan Yang, Jianhao Zhang, Yuntao Zhu, Xuan Zhou, Sailing He, and Liu Liu
Opt. Lett. 42(3) 615-618 (2017)

Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer

Peng Xing and Jaime Viegas
Opt. Express 23(19) 24098-24107 (2015)

Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers

Biswajeet Guha, Alexander Gondarenko, and Michal Lipson
Opt. Express 18(3) 1879-1887 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [Crossref] [PubMed]
  2. R. Soref, “Silicon Photonics: A Review of Recent Literature,” Silicon 2(1), 1–6 (2010).
    [Crossref]
  3. T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
    [Crossref]
  4. H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27(4), 4727–4733 (2019).
    [Crossref] [PubMed]
  5. C. A. Brackett, “Dense wavelength division multiplexing networks: Principle and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
    [Crossref]
  6. L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
    [Crossref]
  7. P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
    [Crossref]
  8. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  9. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood, “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  10. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  11. M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
    [Crossref]
  12. P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
    [Crossref] [PubMed]
  13. J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
    [Crossref]
  14. J. Brouckaert, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Planar Concave Grating Demultiplexer Fabricated on a Nanophotonic Silicon-on-Insulator Platform,” J. Lightwave Technol. 25(5), 1269–1275 (2007).
    [Crossref]
  15. D. Chowdhury, “Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers,” IEEE J. Sel. Top. Quantum. Electron. 6(2), 233–239 (2000).
    [Crossref]
  16. J. Zou, X. Jiang, X. Xiang, T. Lang, and J. J. He, “Ultra-Compact Birefringence-Compensated Arrayed Waveguide Grating Triplexer Based on Silicon-On-Insulator,” J. Lightwave Technol. 31(12), 1935–1940 (2013).
    [Crossref]
  17. T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
    [Crossref] [PubMed]
  18. J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
    [Crossref] [PubMed]
  19. G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, and J. Xia, “Silicon nitride O-band (de)multiplexers with low thermal sensitivity,” Opt. Express 25(11), 12260–12267 (2017).
    [Crossref] [PubMed]
  20. Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, and Z. Zhou, “Athermal and flat-topped silicon Mach-Zehnder filters,” Opt. Express 24(26), 29577–29582 (2016).
    [Crossref] [PubMed]
  21. H. Yang, J. Zhang, Y. Zhu, X. Zhou, S. He, and L. Liu, “Ultra-compact and temperature-insensitive Mach-Zehnder interferometer based on one multimode waveguide on silicon,” Opt. Lett. 42(3), 615–618 (2017).
    [Crossref] [PubMed]
  22. C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011).
    [Crossref] [PubMed]
  23. C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
    [Crossref]
  24. P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
    [Crossref]
  25. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  26. J.-M. Lee, M. Kim, M. Fournier, P. Labeye, C. J. Oton, and F. Testa, “Postfabrication Trimming of CMOS-Compatible Athermal MZI by Thermal Annealing,” J. Lightwave Technol. 34(4), 1288–1292 (2016).
    [Crossref]
  27. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
    [Crossref] [PubMed]
  28. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [Crossref] [PubMed]
  29. S. Dwivedi, H. D’Heer, and W. Bogaerts, “Maximizing Fabrication and Thermal Tolerances of All-Silicon FIR Wavelength Filters,” IEEE Photonic. Technol. Lett. 27(8), 871–874 (2015).
    [Crossref]
  30. P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
    [Crossref] [PubMed]
  31. T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
    [Crossref]
  32. H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
    [Crossref]
  33. D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
    [Crossref] [PubMed]
  34. X. Guan and L. H. Frandsen, “All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides,” in IEEE 13th International Conference on Group IV Photonics (IEEE, 2016), pp. 8–9.
    [Crossref]

2019 (1)

2017 (2)

2016 (3)

2015 (4)

S. Dwivedi, H. D’Heer, and W. Bogaerts, “Maximizing Fabrication and Thermal Tolerances of All-Silicon FIR Wavelength Filters,” IEEE Photonic. Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
[Crossref] [PubMed]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Zou, X. Jiang, X. Xiang, T. Lang, and J. J. He, “Ultra-Compact Birefringence-Compensated Arrayed Waveguide Grating Triplexer Based on Silicon-On-Insulator,” J. Lightwave Technol. 31(12), 1935–1940 (2013).
[Crossref]

2012 (2)

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

2011 (2)

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2007 (1)

2004 (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref] [PubMed]

2001 (1)

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

2000 (1)

D. Chowdhury, “Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers,” IEEE J. Sel. Top. Quantum. Electron. 6(2), 233–239 (2000).
[Crossref]

1996 (1)

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: Principle and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Adibi, A.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Alipour, P.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Aroca, R. A.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Baehrjones, T.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Baets, R.

Baeyens, Y.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Bergman, K.

Bogaerts, W.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: Principle and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

Brouckaert, J.

Buhl, L.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Buhl, L. L.

Cardakli, M.

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

Chen, C. P.

Chen, D.

Chen, L.

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Chen, P.

Chen, S.

Chen, Y.-K.

Chowdhury, D.

D. Chowdhury, “Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers,” IEEE J. Sel. Top. Quantum. Electron. 6(2), 233–239 (2000).
[Crossref]

Chu, T.

D’Heer, H.

S. Dwivedi, H. D’Heer, and W. Bogaerts, “Maximizing Fabrication and Thermal Tolerances of All-Silicon FIR Wavelength Filters,” IEEE Photonic. Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

Dadap, J. I.

Dai, D.

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

Danziger, S.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Deng, Q.

DeRose, C. T.

C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Doerr, C. R.

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

Dong, P.

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Driscoll, J. B.

Dumon, P.

Dwivedi, S.

S. Dwivedi, H. D’Heer, and W. Bogaerts, “Maximizing Fabrication and Thermal Tolerances of All-Silicon FIR Wavelength Filters,” IEEE Photonic. Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

Eftekhar, A. A.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Fournier, M.

Frandsen, L. H.

X. Guan and L. H. Frandsen, “All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides,” in IEEE 13th International Conference on Group IV Photonics (IEEE, 2016), pp. 8–9.
[Crossref]

Fu, Y.

Fukuda, H.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

Gan, F.

Gao, G.

Gondarenko, A.

Grote, R. R.

Guan, X.

X. Guan and L. H. Frandsen, “All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides,” in IEEE 13th International Conference on Group IV Photonics (IEEE, 2016), pp. 8–9.
[Crossref]

Guha, B.

Guoqiang, P. L.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Han, X.

Hayee, M.

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

He, J. J.

He, S.

H. Yang, J. Zhang, Y. Zhu, X. Zhou, S. He, and L. Liu, “Ultra-compact and temperature-insensitive Mach-Zehnder interferometer based on one multimode waveguide on silicon,” Opt. Lett. 42(3), 615–618 (2017).
[Crossref] [PubMed]

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

Hiraki, T.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

Hochberg, M.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Hosseini, E. S.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Hu, P.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Jian, X.

Jiang, X.

Kadota, Y.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

Kim, M.

Kondo, Y.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Labeye, P.

Lang, T.

Lee, J.-M.

Li, C.

Li, H.

Li, L.

Li, W.

Li, X.

Lipson, M.

Liu, L.

Liu, W.

Lo, G. Q.

Lu, M.

Luck, D. L.

C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Michel, J.

Momeni, B.

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Moooka, T.

Morthier, G.

Osgood, R. M.

Oton, C. J.

Pang, A.

Pinguet, T.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Prather, D.

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Qi, M.

Qiao, L.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Sahin, A.

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

Shen, W.

Sheng, Z.

Shi, Y.

Song, J. H.

Soref, R.

R. Soref, “Silicon Photonics: A Review of Recent Literature,” Silicon 2(1), 1–6 (2010).
[Crossref]

Souhan, B.

Stein, A.

Tanobe, H.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

Tao, S.

Teng, J.

Testa, F.

Trotter, D. C.

C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Uenuma, M.

Van Thourhout, D.

Viegas, J.

Wang, H.

Wang, J.

Wang, L.

Wang, X.

Wang, Z.

Watts, M. R.

C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

Willner, A.

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Wu, A.

Xia, J.

Xiang, X.

Xiao, X.

Xie, C.

Xie, X.

Xing, P.

Yamada, K.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

Yamamoto, T.

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

Yang, H.

Yang, Q.

Yang, X.

Yasaka, H.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

Ye, T.

Yoshikuni, Y.

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

You, L.

Yu, M.

Yu, Y.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zhang, H.

Zhang, J.

Zhang, L.

Zhang, R.

Zhang, W.

Zhang, Y.

Zhao, M.

Zhou, H.

Zhou, X.

Zhou, Z.

Zhu, S.

Zhu, Y.

Zou, J.

Zou, S.

Front. Mater. (1)

T. Hiraki, H. Fukuda, K. Yamada, and T. Yamamoto, “Small Sensitivity to Temperature Variations of Si-Photonic Mach–Zehnder Interferometer Using Si and SiN Waveguides,” Front. Mater. 2, 26 (2015).
[Crossref]

IEEE J. Sel. Areas Comm. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: Principle and applications,” IEEE J. Sel. Areas Comm. 8(6), 948–964 (1990).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Dong, “Silicon Photonic Integrated Circuits for Wavelength-Division Multiplexing Applications,” IEEE J. Sel. Top. Quantum Electron. 22(6), 370–378 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

D. Chowdhury, “Design of low-loss and polarization-insensitive reflection grating-based planar demultiplexers,” IEEE J. Sel. Top. Quantum. Electron. 6(2), 233–239 (2000).
[Crossref]

IEEE Photonic. Technol. Lett. (4)

S. Dwivedi, H. D’Heer, and W. Bogaerts, “Maximizing Fabrication and Thermal Tolerances of All-Silicon FIR Wavelength Filters,” IEEE Photonic. Technol. Lett. 27(8), 871–874 (2015).
[Crossref]

H. Tanobe, Y. Kondo, Y. Kadota, H. Yasaka, and Y. Yoshikuni, “A Temperature Insensitive InGaAsP/InP Wavelength Filter,” IEEE Photonic. Technol. Lett. 8(11), 1489–1491 (1996).
[Crossref]

M. Hayee, M. Cardakli, A. Sahin, and A. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photonic. Technol. Lett. 13(8), 881–883 (2001).
[Crossref]

L. Chen, C. R. Doerr, L. Buhl, Y. Baeyens, and R. A. Aroca, “Monolithically Integrated 40-Wavelength Demultiplexer and Photodetector Array on Silicon,” IEEE Photonic. Technol. Lett. 23(13), 869–871 (2011).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

J. Wang, S. He, and D. Dai, “On‐chip silicon 8‐channel hybrid (de) multiplexer enabling simultaneous mode‐and polarization‐division‐multiplexing,” Laser Photonics Rev. 8(2), L18–L22 (2014).
[Crossref]

Nat. Photonics (1)

T. Baehrjones, T. Pinguet, P. L. Guoqiang, S. Danziger, D. Prather, and M. Hochberg, “Myths and rumours of silicon photonics,” Nat. Photonics 6(4), 206–208 (2012).
[Crossref]

Nature (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[Crossref] [PubMed]

Opt. Express (13)

Q. Deng, L. Liu, R. Zhang, X. Li, J. Michel, and Z. Zhou, “Athermal and flat-topped silicon Mach-Zehnder filters,” Opt. Express 24(26), 29577–29582 (2016).
[Crossref] [PubMed]

G. Gao, D. Chen, S. Tao, Y. Zhang, S. Zhu, X. Xiao, and J. Xia, “Silicon nitride O-band (de)multiplexers with low thermal sensitivity,” Opt. Express 25(11), 12260–12267 (2017).
[Crossref] [PubMed]

H. Li, H. Wang, L. You, P. Hu, W. Shen, W. Zhang, X. Yang, L. Zhang, H. Zhou, Z. Wang, and X. Xie, “Multispectral superconducting nanowire single photon detector,” Opt. Express 27(4), 4727–4733 (2019).
[Crossref] [PubMed]

J. Wang, Z. Sheng, L. Li, A. Pang, A. Wu, W. Li, X. Wang, S. Zou, M. Qi, and F. Gan, “Low-loss and low-crosstalk 8 × 8 silicon nanowire AWG routers fabricated with CMOS technology,” Opt. Express 22(8), 9395–9403 (2014).
[Crossref] [PubMed]

J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
[Crossref] [PubMed]

J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood, “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
[Crossref] [PubMed]

T. Ye, Y. Fu, L. Qiao, and T. Chu, “Low-crosstalk Si arrayed waveguide grating with parabolic tapers,” Opt. Express 22(26), 31899–31906 (2014).
[Crossref] [PubMed]

D. Chen, X. Xiao, L. Wang, Y. Yu, W. Liu, and Q. Yang, “Low-loss and fabrication tolerant silicon mode-order converters based on novel compact tapers,” Opt. Express 23(9), 11152–11159 (2015).
[Crossref] [PubMed]

P. Xing and J. Viegas, “Broadband CMOS-compatible SOI temperature insensitive Mach-Zehnder interferometer,” Opt. Express 23(19), 24098–24107 (2015).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[Crossref] [PubMed]

C. Li, J. H. Song, J. Zhang, H. Zhang, S. Chen, M. Yu, and G. Q. Lo, “Silicon polarization independent microring resonator-based optical tunable filter circuit with fiber assembly,” Opt. Express 19(16), 15429–15437 (2011).
[Crossref] [PubMed]

P. Dong, C. Xie, L. Chen, L. L. Buhl, and Y.-K. Chen, “112-Gb/s monolithic PDM-QPSK modulator in silicon,” Opt. Express 20(26), B624–B629 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Silicon (1)

R. Soref, “Silicon Photonics: A Review of Recent Literature,” Silicon 2(1), 1–6 (2010).
[Crossref]

Other (3)

X. Guan and L. H. Frandsen, “All-silicon thermal independent Mach-Zehnder interferometer with multimode waveguides,” in IEEE 13th International Conference on Group IV Photonics (IEEE, 2016), pp. 8–9.
[Crossref]

C. T. DeRose, M. R. Watts, D. C. Trotter, and D. L. Luck, “Silicon microring modulator with integrated heater and temperature sensor for thermal control, ” in Conference on Lasers and Electro-optics (Optical Society of America, 2010), paper CThJ3.
[Crossref]

P. Alipour, E. S. Hosseini, A. A. Eftekhar, B. Momeni, and A. Adibi, “Temperature-insensitive silicon microdisk resonators using polymeric cladding layers, ” in Lasers and Electro-Optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009 (IEEE, 2009), pp. 1–2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Core structure of the Mach-Zehnder interferometer. The MZI consists of two symmetrical mode converters and a straight multimode waveguide (b) Schematic of the MZI. The mode converter can convert the TE0 mode into TE0/TE1 hybrid modes. The interference is achieved due to the different group index in different modes. When the TE0 mode input to the device, two interference curves can be obtained through TE0 mode output and TE1 mode output, respectively. Similar to the TE1 mode input to the device.
Fig. 2
Fig. 2 Schematic of the mode converter in the MZI. The mode converter can convert the TE0 or TE1 mode into TE0/TE1 hybrid modes.
Fig. 3
Fig. 3 Simulated results of transmission curves of TE0 -TE0 and TE0-TE1 via different width of W2 in mode converter.
Fig. 4
Fig. 4 Calculated temperature dependence of the effective index for the TE0 (black) and TE1 (red) modes on the waveguide width of the multimode waveguide with the height of 220nm.
Fig. 5
Fig. 5 Simulation results of (a) TE0 input-TE0/TE1 output (b) TE1 input-TE0/TE1 output MZI. The insertion loss of TE0-TE0, TE0-TE1, TE1-TE0, and TE1-TE1 are 0.025dB, 0.25dB, 0.25dB and 0.15dB over the wavelength range from 1545nm-1585nm. The extinction ratio of better than −20dB are obtained near 1550nm.
Fig. 6
Fig. 6 TE0-TE0 at 20°C (black) and 50°C (red) simulated with different multimode waveguide widths (a) 641nm (b) 646 nm (c) 651nm. The thermal sensitivity of the device is less than 13pm/°C over the 40nm wavelength range.
Fig. 7
Fig. 7 Measured transmission curves of (a) TE0 input –TE0 output(black)/ TE0 input –TE1 output(dark red) (b) TE1 input –TE0 output(blue)/ TE1 input –TE1 output(green) at 20°C. The measured results show the minimum insertion loss lower than 0.31dB with a minimum extinction ratio larger than 8dB for all channels from 1545nm to 1585nm.
Fig. 8
Fig. 8 Measured transmission curves of (a) TE0 input –TE0 output (b) TE0 input –TE1 output (c) TE1 input –TE0 output (d) TE1 input –TE1 output at 20°C (black)/30°C (purple)/40°C (blue)/50°C (orange). The thermal sensitivity of the device is less than 13 pm/°C over the 40nm wavelength range.
Fig. 9
Fig. 9 Simulated results of extinction ratio vary with the conversion efficiency of directional coupler.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR= λ 2 n g (T E 0 )*L n g (T E 1 )*L
dλ dT = λ( d n eff (T E 0 ) dT d n eff (T E 1 ) dT ) n g (T E 0 ) n g (T E 1 )

Metrics