Abstract

Compared to glass walls with a positive curvature, those with a negative curvature have been proven to have stronger confinement of light. Therefore, we change the multi-layered air holes in a photonic crystal fiber into several negative curvature tubes. As a result, the confinement medium is shifted from a low-index cladding material into a special structure. The theoretical analysis shows that each vector eigenmode has a corresponding threshold value for the outer tube thickness. It means that we can confine the target modes and filter the unnecessary modes by shifting the outer tube thickness. After substantial investigation on this fiber, we obtain the appropriate values for each structural parameter and then fabricate this negative curvature ring-core fiber under the guidance of the simulation results. Firstly, we draw the central cane under vacuum condition, then stack the cane and six capillaries to form the preform, and finally draw the ring-core fiber by using vacuumization method. The fiber test experiment indicates that the fiber length should be at least 15 m∼20 m to form the donut facula, and the tested losses of OAM+1,1, OAM+2,1, OAM+3,1, and OAM+4,1 are 0.30 dB/m, 0.36 dB/m, 0.37 dB/m, and 0.42 dB/m, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of linearly polarized orbital angular momentum modes in a side-hole ring fiber with tunable topology numbers

Ya Han, Yan-Ge Liu, Wei Huang, Zhi Wang, Jun-Qi Guo, and Ming-Ming Luo
Opt. Express 24(15) 17272-17284 (2016)

Higher-order mode suppression in chalcogenide negative curvature fibers

Chengli Wei, Robinson A. Kuis, Francois Chenard, Curtis R. Menyuk, and Jonathan Hu
Opt. Express 23(12) 15824-15832 (2015)

Photonic crystal fiber for supporting 26 orbital angular momentum modes

Zi-Ang Hu, Yu-Qi Huang, Ai-Ping Luo, Hu Cui, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 24(15) 17285-17291 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Morioka, “New generation optical infrastructure technologies: ’EXAT initiative’ towards 2020 and beyond,” in Proceeding of the 14th OptoElectronics and Communication Conference (OECC), (HongKong, China, 2009), pp. 1–2.
  2. D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
    [Crossref]
  3. S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.
  4. K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
    [Crossref]
  5. J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
    [Crossref] [PubMed]
  6. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
    [Crossref] [PubMed]
  7. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division multiplexed systems,” J. Light. Technol. 32, 2824–2829 (2014).
    [Crossref]
  8. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
    [Crossref]
  9. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  10. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref] [PubMed]
  11. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an oam fiber supporting 36 states,” Opt. Express 22, 26117–26127 (2014).
    [Crossref] [PubMed]
  12. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
    [Crossref]
  13. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “Few-mode fiber with inverse-parabolic graded-index profile for transmission of oam-carrying modes,” Opt. Express 22, 18044–18055 (2014).
    [Crossref] [PubMed]
  14. C. Brunet and L. A. Rusch, “Optical fibers for the transmission of orbital angular momentum modes,” Opt. Fiber Technol. 35, 2–7 (2017).
    [Crossref]
  15. H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
    [Crossref]
  16. G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).
  17. Z. Hu, Y. Huang, A. Luo, H. Cui, Z. Luo, and W. Xu, “Photonic crystal fiber for supporting 26 orbital angular momentum modes,” Opt. Express 24, 17285–17291 (2016).
    [Crossref] [PubMed]
  18. W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
    [Crossref]
  19. A. Tandjè, J. Yammine, M. Dossou, G. Bouwmans, K. Baudelle, A. Vianou, E. R. Andresen, and L. Bigot, “Ring-core photonic crystal fiber for propagation of oam modes,” Opt. Lett. 44, 1611–1614 (2019).
    [Crossref] [PubMed]
  20. Y. Wang and W. Ding, “Confinement loss in hollow-core negative curvature fiber: A multi-layered model,” Opt. Express 25, 33122–33133 (2017).
    [Crossref]
  21. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014).
    [Crossref] [PubMed]
  22. L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
    [Crossref] [PubMed]

2019 (1)

2017 (3)

Y. Wang and W. Ding, “Confinement loss in hollow-core negative curvature fiber: A multi-layered model,” Opt. Express 25, 33122–33133 (2017).
[Crossref]

C. Brunet and L. A. Rusch, “Optical fibers for the transmission of orbital angular momentum modes,” Opt. Fiber Technol. 35, 2–7 (2017).
[Crossref]

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

2016 (5)

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Z. Hu, Y. Huang, A. Luo, H. Cui, Z. Luo, and W. Xu, “Photonic crystal fiber for supporting 26 orbital angular momentum modes,” Opt. Express 24, 17285–17291 (2016).
[Crossref] [PubMed]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

L. Vincetti, “Empirical formulas for calculating loss in hollow core tube lattice fibers,” Opt. Express 24, 10313–10325 (2016).
[Crossref] [PubMed]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (2)

D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

2012 (2)

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref] [PubMed]

2011 (2)

Andresen, E. R.

Baudelle, K.

Bigot, L.

Bigot-Astruc, M.

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division multiplexed systems,” J. Light. Technol. 32, 2824–2829 (2014).
[Crossref]

Bolle, C.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Bouwmans, G.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Brunet, C.

C. Brunet and L. A. Rusch, “Optical fibers for the transmission of orbital angular momentum modes,” Opt. Fiber Technol. 35, 2–7 (2017).
[Crossref]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an oam fiber supporting 36 states,” Opt. Express 22, 26117–26127 (2014).
[Crossref] [PubMed]

Burrows, E. C.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Chen, C.

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Cui, H.

Deng, Y.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Ding, W.

Dossou, M.

Esmaeelpour, M.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Essiambre, R. J.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Fini, J.

D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Gnauck, A. H.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Gregg, P.

Hayashi, T.

Hou, Z.

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Hu, Z.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Huang, Y.

Ishida, I.

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

Koshiba, M.

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

Kristensen, P.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

LaRochelle, S.

Li, H.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Lingle, R.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Luo, A.

Luo, Z.

Matsuo, S.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

McCurdy, A. H.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Messaddeq, Y.

Molin, D.

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division multiplexed systems,” J. Light. Technol. 32, 2824–2829 (2014).
[Crossref]

Morioka, T.

T. Morioka, “New generation optical infrastructure technologies: ’EXAT initiative’ towards 2020 and beyond,” in Proceeding of the 14th OptoElectronics and Communication Conference (OECC), (HongKong, China, 2009), pp. 1–2.

Mumtaz, S.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Nelson, L.

D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Padgett, M. J.

Peckham, D. W.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Poletti, F.

Ramachandran, S.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Randel, S.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Richardson, D.

D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Rusch, L. A.

Ryf, R.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Saitoh, K.

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

Sasaki, T.

Sasaki, Y.

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

Sasaoka, E.

Shimakawa, O.

Sierra, A.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Sillard, P.

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division multiplexed systems,” J. Light. Technol. 32, 2824–2829 (2014).
[Crossref]

Takenaga, K.

J. Tu, K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber,” Opt. Express 20, 15157–15170 (2012).
[Crossref] [PubMed]

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

Tandjè, A.

Tang, X.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Taru, T.

Tian, W.

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Tu, J.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Ung, B.

Vaity, P.

Vianou, A.

Vincetti, L.

Wang, L.

Wang, Y.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Winzer, P. J.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

Xi, L.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Xia, C.

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Xu, M.

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Xu, W.

Yammine, J.

Yao, A. M.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Zhang, H.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Zhang, W.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Zhang, X.

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Zhou, G.

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

Adv. Opt. Photon. (1)

IEEE Photonics J. (1)

G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, and Z. Hou, “Design and analysis of a microstructure ring fiber for orbital angular momentum transmission,” IEEE Photonics J. 8, 1–12 (2016).

J. Light. Technol. (3)

P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division multiplexed systems,” J. Light. Technol. 32, 2824–2829 (2014).
[Crossref]

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle, “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6×6 mimo processing,” J. Light. Technol. 30, 521–531 (2012).
[Crossref]

K. Saitoh and S. Matsuo, “Multicore fiber technology,” J. Light. Technol. 34, 55–66 (2016).
[Crossref]

Nat. Photon. (1)

D. Richardson, J. Fini, and L. Nelson, “Space division multiplexing in iptical fibres,” Nat. Photon. 7, 354–362 (2013).
[Crossref]

Opt. Commun. (1)

H. Zhang, X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, “A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission,” Opt. Commun. 397, 59–66 (2017).
[Crossref]

Opt. Express (8)

Opt. Fiber Technol. (2)

C. Brunet and L. A. Rusch, “Optical fibers for the transmission of orbital angular momentum modes,” Opt. Fiber Technol. 35, 2–7 (2017).
[Crossref]

W. Tian, H. Zhang, X. Zhang, L. Xi, W. Zhang, and X. Tang, “A circular photonic crystal fiber supporting 26 oam modes,” Opt. Fiber Technol. 30, 184–189 (2016).
[Crossref]

Opt. Lett. (1)

Optica (1)

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref] [PubMed]

Other (2)

S. Matsuo, Y. Sasaki, I. Ishida, K. Takenaga, K. Saitoh, and M. Koshiba, “Recent progress on multi-core fiber and few-mode fiber,” in Proceeding of the Optical Fiber Communication Conference (OFC), (Anaheim, USA, 2013), pp. 1–3.

T. Morioka, “New generation optical infrastructure technologies: ’EXAT initiative’ towards 2020 and beyond,” in Proceeding of the 14th OptoElectronics and Communication Conference (OECC), (HongKong, China, 2009), pp. 1–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) Circular type photonic crystal fiber, (b) equivalent Bragg fiber, (c) loss comparison between multi-layered annular fiber and negative curvature fiber, where the radius of the air-core (a), the distance of the tube (d), and the thickness of the tube (t) in the annular fiber are 15 μm, 10 μm, and 0.24 μm, respectively, and the radius of the air-core (a′), the distance of the tube (d′), and the thickness of the tube (t′) in the negative curvature fiber are 14.33 μm, 16 μm, and 0.24 μm, respectively, and (d) improved ring-core fiber with negative curvature tubes.
Fig. 2
Fig. 2 (a) Cross-section of the proposed negative curvature ring-core fiber (NC-RCF), and (b) description of each structural parameter.
Fig. 3
Fig. 3 (a) neff of NC-RCF as a function of λ/Λ, where r = 7 μm and r0/r = 0.6, (b) cross-section of step-index ring-core fiber (SI-RCF) with the same r and r0 as that of NC-RCF, (c) corresponding ncl of SI-RCF for each neff in (a), and (d) Veff as a function of d/Λ and λ/Λ.
Fig. 4
Fig. 4 Cutoffs of each vector eigenmode as a function of Veff and ρ with d/Λ = 0.8.
Fig. 5
Fig. 5 Dependence of confinement loss on t where r = 7 μm, ρ = 0.65, λ = 1.55 μm, and d/Λ = 0.8.
Fig. 6
Fig. 6 (a) Dependence of the confinement loss on the wavelength for (b) silica cladding model, (c) negative curvature tube cladding with t=2.0 μm, (d) negative curvature tube cladding with t=2.5 μm and (e) air cladding model.
Fig. 7
Fig. 7 (a) Dependence of neff on λ, where r = 7 μm, ρ = 0.65, t = 1.2 μm, and d/Λ = 0.8, (b) Δneff between the adjacent vector eigenmodes in each OAM mode group, (c) minimum Δneff between OAM mode groups, and (d) accurate modes used to calculate the minimum Δneff in (c).
Fig. 8
Fig. 8 Mode intensity distribution and electric field distribution for vector eigenmodes in OAM mode groups #1, #2, #3, #4, #5, #6, and #8.
Fig. 9
Fig. 9 (a) Dependence of confinement loss on λ, (b) dependence of bending loss on Rc, where λ is 1.55 μm, (c) nonlinear coefficient γ over C+L bands, and (d) chromatic dispersion over C+L bands.
Fig. 10
Fig. 10 Fabrication of the proposed negative curvature ring-core fiber (NC-RCF). (a) Schematic figure of the fabrication process using stack-and-draw approach. In the first step, stack the preform of the central ring-core with outer diameter of 14mm; in the second step, draw the stacked preform to a cane with outer diameter of 1.3 mm; in the third step, stack the preform of the NC-RCF in an 8 mm tube, where the cane is placed in the center; in the fourth step, draw the preform to the designed fiber with outer diameter of 125 μm. (b) Sealed capillaries for the first stack. (c) Stacked preform of the central cane. (d) Cross section of the intermedia cane. (e) Sealed capillaries for second stack. (f) Stacked preform of the NC-RCF. (g) Scanning electron microscopic photo of the fabricated NC-RCF.
Fig. 11
Fig. 11 Enlarged views of the fabricated fiber, with scale lengths of (a) 30 μm, (b) 10 μm, and (c) 8 μm.
Fig. 12
Fig. 12 Experimental setup for the generation and transmission of OAM through NC-RCF.EDFA: erbium-doped fiber amplifier; OC: optical coupler; PC: polarization controller; SMF: single mode fiber; Col.: collimator; SLM: spatial light modulator; L: lens; NC-RCF: negative curvature ring-core fiber; OL: objective lens; BS: beam splitter; CCD: charge coupled device; VOA: variable optical attenuator.
Fig. 13
Fig. 13 Experiment results: beam profiles for (a) OAM+1,1, (b) OAM+2,1, (c) OAM+3,1, and (d) OAM+4,1 when fiber length is 3 m, 15 m, 20 m, and 40 m; simulation results: intensity and phase for (a) OAM+1,1, (b) OAM+2,1, (c) OAM+3,1, and (d) OAM+4,1.

Tables (3)

Tables Icon

Table 1 Fitting coefficients in Eq. (3).

Tables Icon

Table 2 The inner diameters and outer diameters of the silica tubes and capillaries used in the fabrication process.

Tables Icon

Table 3 Comparison among the reported ring-core fibers and the proposed negative curvature ring-core fiber in this work.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

V eff = 2 π λ r n co 2 n cl 2 ,
V eff ( λ Λ , d Λ ) = A 1 ( d Λ ) ln ( d Λ ) 2 + A 2 ( d Λ ) ln ( d Λ ) + A 3 ( d Λ ) ,
A i ( d Λ ) = a i ( d Λ ) 3 + b i ( d Λ ) 2 + c i ( d Λ ) + d i .
[ σ + OAM + l , m σ OAM l , m σ OAM + l , m σ + OAM l , m ] = F l , m [ 1 i 0 0 1 i 0 0 0 0 1 i 0 0 1 i ] [ HE l + 1 , m even HE l + 1 , m odd EH l 1 , m even EH l 1 , m odd ] ,
Loss = 8.686 k Im ( n eff ) ,
n ( x , y ) = n 0 ( x , y ) ( 1 + x / R c ) ,
γ = 2 π n 2 λ A eff ,
CD = λ c d 2 Re ( n eff ) d λ 2 .

Metrics