Abstract

In this paper, we propose an all-optical system for the generation of binary phase-coded microwave pulses without baseband components. The scheme is based on a dual-parallel Mach–Zehnder modulator (DPMZM). By properly applying the coding signals and the microwave signals to the precisely biased DPMZM, accurate π phase shift binary phase-coded microwave pulses without baseband components can be generated. The proposed system has an extremely simple and stable all-optical structure, leading to a large frequency tuning range and a high signal quality. The operation of the system is very easy. The generation of the 2-Gbit/s 14-GHz and 4-Gbit/s 16-GHz binary phase-coded microwave pulses under different coding signal amplitudes and microwave carrier powers are experimental verified. The results show that the proposed binary phase-coded microwave pulses generation system has high quality and performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of binary and quaternary phase-coded microwave signals by utilizing a dual-polarization dual-parallel Mach-Zehnder modulator

Peng Li, Lianshan Yan, Jia Ye, Yan Pan, Wei Pan, Bin Luo, Xihua Zou, Tao Zhou, Zhiyu Chen, and Maowen Wang
Opt. Express 26(21) 28013-28021 (2018)

Photonic generation of background-free binary and quaternary phase-coded microwave pulses based on vector sum

Mingzheng Lei, Zhennan Zheng, Chunqi Song, Yunping Bai, Jinwang Qian, Xinlu Gao, and Shanguo Huang
Opt. Express 27(15) 20774-20784 (2019)

Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM

Wei Li, Wen Ting Wang, Wen Hui Sun, Li Xian Wang, and Ning Hua Zhu
Opt. Express 22(7) 7446-7457 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Advanced Techniques (Inst. Eng. Technol., 2012)
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. X. Gao, M. Zhao, M. Xie, M. Lei, X. Song, K. Bi, Z. Zheng, and S. Huang, “2D optically controlled radio frequency orbital angular momentum beam steering system based on a dual-parallel Mach-Zehnder modulator,” Opt. Lett. 44(2), 255–258 (2019).
    [Crossref] [PubMed]
  4. J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett. 27(15), 1345–1347 (2002).
    [Crossref] [PubMed]
  5. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
    [Crossref]
  6. C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
    [Crossref]
  7. Y. Chen, A. Wen, Y. Chen, and X. Wu, “Photonic generation of binary and quaternary phase-coded microwave waveforms with an ultra-wide frequency tunable range,” Opt. Express 22(13), 15618–15625 (2014).
    [Crossref] [PubMed]
  8. W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
    [Crossref]
  9. Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  10. X. Li, S. H. Zhao, Z. H. Zhu, K. Qu, T. Lin, and S. L. Pan, “Frequency-octupled phase-coded signal generation based on carrier-suppressed high-order double sideband modulation,” Chin. Opt. Lett. 15(7), 070603 (2017).
    [Crossref]
  11. Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
    [Crossref]
  12. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  13. S. Liu, D. Zhu, Z. Wei, and S. Pan, “Photonic generation of widely tunable phase-coded microwave signals based on a dual-parallel polarization modulator,” Opt. Lett. 39(13), 3958–3961 (2014).
    [Crossref] [PubMed]
  14. H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
    [Crossref]
  15. Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
    [Crossref]
  16. W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).
  17. W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
    [Crossref] [PubMed]
  18. Y. Chen and S. L. Pan, “Photonic generation of tunable frequency-multiplied phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 30(13), 1230–1233 (2018).
    [Crossref]
  19. S. Zhu, M. Li, X. Wang, N. H. Zhu, Z. Z. Cao, and W. Li, “Photonic generation of background-free binary phase-coded microwave pulses,” Opt. Lett. 44(1), 94–97 (2019).
    [Crossref] [PubMed]
  20. X. Li, S. Zhao, S. Pan, Z. Zhu, K. Qu, and T. Lin, “Generation of a frequency-quadrupled phase-coded signal using optical carrier phase shifting and balanced detection,” Appl. Opt. 56(4), 1151–1156 (2017).
    [Crossref] [PubMed]
  21. Z. Zheng, J. Qian, M. Lei, C. Song, M. Xie, X. Gao, and S. Huang, “Optical network solution to the synchronization of distributed coherent aperture radar,” Opt. Lett. 44(8), 2121–2124 (2019).
    [Crossref] [PubMed]

2019 (3)

2018 (1)

Y. Chen and S. L. Pan, “Photonic generation of tunable frequency-multiplied phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 30(13), 1230–1233 (2018).
[Crossref]

2017 (3)

2016 (1)

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

2014 (3)

2013 (3)

Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
[Crossref] [PubMed]

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).

2012 (1)

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

2011 (2)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

2009 (1)

2003 (1)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

2002 (1)

Bi, K.

Cao, Z. Z.

Chen, M.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Chen, W.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Chen, X.

H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
[Crossref]

Chen, Y.

Chi, H.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Deng, H.

H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
[Crossref]

Dong, J. J.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Gao, X.

Gao, Y. S.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Huang, S.

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Jiang, F.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Leaird, D. E.

Lei, M.

Li, M.

S. Zhu, M. Li, X. Wang, N. H. Zhu, Z. Z. Cao, and W. Li, “Photonic generation of background-free binary phase-coded microwave pulses,” Opt. Lett. 44(1), 94–97 (2019).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

Li, W.

Li, W. Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Li, X.

Li, Z.

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Lin, T.

Liu, S.

McKinney, J. D.

Pan, S.

Pan, S. L.

Y. Chen and S. L. Pan, “Photonic generation of tunable frequency-multiplied phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 30(13), 1230–1233 (2018).
[Crossref]

X. Li, S. H. Zhao, Z. H. Zhu, K. Qu, T. Lin, and S. L. Pan, “Frequency-octupled phase-coded signal generation based on carrier-suppressed high-order double sideband modulation,” Chin. Opt. Lett. 15(7), 070603 (2017).
[Crossref]

Qian, J.

Qu, K.

Song, C.

Song, X.

Sun, W. H.

Wang, C.

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

Wang, H.

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).

Wang, L. X.

W. Li, W. T. Wang, W. H. Sun, L. X. Wang, and N. H. Zhu, “Photonic generation of arbitrarily phase-modulated microwave signals based on a single DDMZM,” Opt. Express 22(7), 7446–7457 (2014).
[Crossref] [PubMed]

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).

Wang, W. T.

Wang, X.

Wang, Y.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Wei, Z.

Weiner, A. M.

Wen, A.

Wen, A. J.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Wu, X.

Xiang, S. Y.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Xie, M.

Yao, J.

Yao, J. P.

H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

Yao, N.

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

Yu, Y.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Zhang, J. J.

H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
[Crossref]

Zhang, X. L.

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

Zhang, X. M.

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Zhang, Y.

Zhao, M.

Zhao, S.

Zhao, S. H.

Zheng, Z.

Zhu, D.

Zhu, N. H.

Zhu, S.

Zhu, Z.

Zhu, Z. H.

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Microw. Wirel. Co. (1)

Z. Li, M. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded millimeter-wave signal with large frequency tunability using a polarization-maintaining fiber bragg grating,” IEEE Microw. Wirel. Co. 21(12), 694–696 (2011).
[Crossref]

IEEE Photonics J. (2)

W. Li, L. X. Wang, M. Li, H. Wang, and N. H. Zhu, “Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator,” IEEE Photonics J. 5(4), 1–7 (2013).

W. Chen, A. J. Wen, Y. S. Gao, N. Yao, Y. Wang, M. Chen, and S. Y. Xiang, “Photonic generation of binary and quaternary phase-coded microwave waveforms with frequency quadrupling,” IEEE Photonics J. 8(2), 1–8 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (6)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

C. Wang and J. P. Yao, “Phase-coded millimeter-wave waveforms generation using a spatially discrete chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 24(17), 1493–1495 (2012).
[Crossref]

Y. Chen and S. L. Pan, “Photonic generation of tunable frequency-multiplied phase-coded microwave waveforms,” IEEE Photonics Technol. Lett. 30(13), 1230–1233 (2018).
[Crossref]

H. Deng, J. J. Zhang, X. Chen, and J. P. Yao, “Photonic generation of a phase-coded chirp microwave waveform with increased TWBP,” IEEE Photonics Technol. Lett. 29(17), 1420–1423 (2017).
[Crossref]

Y. Yu, J. J. Dong, F. Jiang, and X. L. Zhang, “Photonic generation of precisely π phase-coded microwave signal with broadband tunability,” IEEE Photonics Technol. Lett. 25(24), 2466–2469 (2013).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (6)

Other (1)

W. L. Melvin and J. A. Scheer, Principles of Modern Radar: Advanced Techniques (Inst. Eng. Technol., 2012)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the proposed photonics system for binary phase-coded microwave pulses generation. OC: optical coupler.
Fig. 2
Fig. 2 The spectrums output form the DPMZM and the waveforms output from the PD under different coding levels.
Fig. 3
Fig. 3 (a) The waveform of generated 2-Gbit/s 14-GHz 13-bit binary Barker-code phase-coded microwave pulse sequence; (b) a single phase-coded pulse of the sequence; (c) the phase information extracted from the single phase-coded pulse; (d) the spectrum of phase-coded microwave pulse sequence; (e) the autocorrelation result of the single phase-coded pulse.
Fig. 4
Fig. 4 (a) The waveform of generated 4-Gbit/s 16-GHz 13-bit binary Barker-code phase-coded microwave pulse sequence; (b) a single phase-coded pulse of the sequence; (c) the phase information extracted from the single phase-coded pulse; (d) the spectrum of phase-coded microwave pulse sequence; (e) the autocorrelation result of the single phase-coded pulse.
Fig. 5
Fig. 5 (a) The waveform of generated 2-Gbit/s 14-GHz 13-bit binary Barker-code phase-coded microwave pulse sequence; (b) a single phase-coded pulse of the sequence; (c) the phase information extracted from the single phase-coded pulse; (d) the spectrum of phase-coded microwave pulse sequence; (e) the autocorrelation result of the single phase-coded pulse.
Fig. 6
Fig. 6 (a) The waveform of generated 4-Gbit/s 16-GHz 13-bit binary Barker-code phase-coded microwave pulse sequence; (b) a single phase-coded pulse of the sequence; (c) the phase information extracted from the single phase-coded pulse; (d) the spectrum of phase-coded microwave pulse sequence; (e) the autocorrelation result of the single phase-coded pulse.
Fig. 7
Fig. 7 (a) The BER results at different received optical powers (microwave carrier power stays as 5 dBm); (b) the BER results at different microwave carrier powers (received optical power stays as 5 dBm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E DPMZM ( e j π V c c(t) V πRF +j π V DC1 V πDC + e j π V c c(t) V πRF ) e jωt +( e j π V DC2 V πDC + e j π V RF cos(Ωt) V πRF ) e j π V DC3 V πDC e jωt
E DPMZM ' cos( φ 1 2 ) e j( m c c(t)+ φ 1 2 ) e jωt +cos( φ 2 2 ) e j( φ 2 2 + φ 3 ) e jωt + J 1 ( m RF ) e j( π 2 + φ 3 ) e jΩt e jωt + J 1 ( m RF ) e j( π 2 + φ 3 ) e jΩt e jωt
I PD cos 2 ( φ 1 2 )+ cos 2 ( φ 2 2 )+2 J 1 2 ( m RF ) +2cos( φ 1 2 )cos( φ 2 2 )cos( m c c(t)+ φ 1 2 φ 2 2 φ 3 ) +4cos( φ 1 2 ) J 1 ( m RF )cos( m c c(t)+ φ 1 2 π 2 φ 3 )cos(Ωt) +4cos( φ 2 2 ) J 1 ( m RF )cos( φ 2 2 π 2 )cos(Ωt)
I PD ' 1+2 J 1 2 ( m RF )+4 J 1 ( m RF )sin( m c c(t))cos(Ωt)
I PDAC ' sin( m c c(t)) J 1 ( m RF )cos(Ωt)
I PDAC ' { 0c(t)=0 sin( m c ) J 1 ( m RF )cos(Ωt)c(t)=+1 sin( m c ) J 1 ( m RF )cos(Ωt+π)c(t)=1

Metrics